Acids and Bases

- They are all around us!
- Cabbage indicator lab for bonus points! ASK!

Properties of Acids

\square Acids taste sour
Acids effect indicators

- Blue litmus turns red
\square Methyl orange turns red
\square Acids have a pH lower than 7
\square Acids are proton (hydrogen ion, H^{+}) donors
Acids react with active metals, produce H_{2}
\square Acids react with carbonates to release carbon dioxide and water
Acids neutralize bases to form salt and water
DAcids are sticky
-Acids are electrolytes

Nomenclature of Acids

- Two types:

1. Binary Acids H^{Z} Prefix Hydro ending ic Acid

- HBr

Hydrobromic Acid

- HCl
?
- ?

Hydrofluoric Acid

2. Oxy Acids

- Hydrogen \qquad $\mathrm{H}_{ـ} \mathrm{O}_{x}$
- Prefix and ending indicate number of oxygens present:
- + 2 oxygens
- +1 oxygen

Hyper___ic acid HClO_{5} Hyperchloric Acid
per____ic acid HClO_{4} PerChloric Acid

- Normal Poly \# (ate ending) ____ic acid HClO_{3} Chloric Acid
- -1 oxygen
-2 oxygens
Hypo ____ous acid HClO Hypochlorous Acid

Acids you SHOULD know:

Strong Acids
Sulfuric acid, $\mathrm{H}_{2} \mathrm{SO}_{4}$ Hydrochloric acid, HCl Acetic acid, $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ Nitric acid, HNO_{3}

Weak Acids
Phosphoric acid, $\mathrm{H}_{3} \mathrm{PO}_{4}$

Sulfuric Acid $\mathrm{H}_{2} \mathrm{SO}_{4}$

- Highest volume production of any chemical in the U.S. (can judge the industrialization by consumption)
\square Used in the production of paper
\square Used in production of fertilizers
\square Used in petroleum refining

Thick clouds of sulfuric acid are a feature of the atmosphere of Venus.
(image provided by NASA)

Nitric Acid HNO_{3}

- Used in the production of fertilizers
- Used in the production of explosives
- Nitric acid is a volatile acid - its reactive components evaporate easily
- Stains proteins (including skin! Horrible yellow color)

Hydrochloric Acid HCl

- Used in the pickling of steel
- Used to purify magnesium from sea water
- Part of gastric juice, it aids in the digestion of protein
- Sold commercially as "Muriatic acid"

Extereal-wipe aff the acid pertly, ivinaliatsly lace: surtace with wafer, using soas freoly, ther sposer winh meist magriarte so feakirg soda.
 chalk, watise or wall pister, or smail piscos of soap sotered witt water, ir mily, roucilage, or far eag
white. CA.L PTYSICIA 4 .
CNUTION: Ta ze used galy ay or on the peascrip-ior ai s pussicien, it for medicinal uas.
CONTENT5
FL. OZ5.
FACKED EY

Phosphoric Acid $\mathrm{H}_{3} \mathrm{PO}_{4}$

- A flavoring agent in sodas
- Used in the manufacture of detergents
- Used in the manufacture of fertilizers
- Not a common laboratory reagent

Acetic Acid $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$

$\&$ Used in the manufacture of plastics
\& Used in making pharmaceuticals
\& Acetic acid is the acid present in vinegar
*Pungent SMELL!

Acids are Proton Donors-

More hydrogens doesn't mean stronger!!!!

Monoprotic acids Diprotic acids Triprotic acids HCl
 $\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$ $\mathrm{H}_{2} \mathrm{SO}_{4}$ $\mathrm{H}_{3} \mathrm{PO}_{4}$
 HNO_{3}

Concentration in Terms of NORMALITY

- Normality $=M \times \#$ of equivalences
- Equivalences are the number of hydrogens (for acids) or hydroxides (for bases)
- What is the normality of a $3.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution?

Strong Acids vs. Weak Acids

Strong acids are assumed to be 100\% ionized in solution (good proton donors).
HCl
$\mathrm{H}_{2} \mathrm{SO}_{4}$
HNO_{3}

Weak acids are usually less than 5\% ionized in solution (poor proton donors).
$\mathrm{H}_{3} \mathrm{PO}_{4} \quad \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2} \quad$ Organic acids

Strong Acid Dissociation

Strong Acid

Weak Acid Dissociation

Very Weak Acid

Organic Acids

Organic acids all contain the "carboxyl" group, sometimes several of them.

The carboxyl group is a poor proton donor, so ALL organic acids are weak acids.

Examples of Organic Acids

- Citric acid in citrus fruit

Malic acid in sour apples
D Deoxyribonucleic acid, DNA
\square Amino acids, the building blocks of protein
Lactic acid in sour milk and sore muscles
\square Butyric acid in rancid butter

Common Acids

Citrus fruits contain citric acid.

- Tea contains tannic acid.

Acids Effect Indicators

Blue litmus paper turns red in contact with an acid.

Hydrogen Ions and Acidity

- To test a diagnosis of diabetic coma, a doctor orders several tests, including the acidity of the patient's blood.
- Results from this test will be expressed in units of pH.
- You will learn how the pH scale is used to indicate the acidity of a solution and why the pH scale is used.

The pH Concept

- The pH of a solution is the negative logarithm of the hydrogen-ion concentration.

$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$

Indicator- an organic molecule that changes color with pH

Hydrangeas will change color based on soil pH-My Fav!

Measuring pH

- Universal Indicators change color over the entire pH scale.

Hydrogen Ions from Water

- The reaction in which water molecules produce ions is called the self-ionization of water.
- The self-ionization of water occurs to a VERY small extent.
- Note the hydrogen ion will pick up a water molecule forming hydronium ion $\mathrm{H}_{3} \mathrm{O}^{+}$

$\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q)$

Hydrogenion Hydroxide ion

The pH Concept

- A solution in which $\left[\mathrm{H}^{+}\right]$is greater than $1 \times 10^{-7} \mathrm{M}$ has a pH less than 7.0 and is acidic.
- The pH of pure water or a neutral aqueous solution is 7.0 and has a $\left[\mathrm{H}^{+}\right]$ equal to
$1 \times 10^{-7} \mathrm{M}$.
- A solution with a pH greater than 7 is basic and has a $\left[\mathrm{H}^{+}\right]$of less than $1 \times$ $10^{-7} \mathrm{M}$.

The pH Concept

$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right.$] and $\left[\mathrm{OH}^{-}\right]$in Acidic, Neutral, and Basic Solutions

The pH Concept

Relationship among $\left[\mathrm{H}^{+}\right]$, $\left[\mathrm{OH}^{-}\right.$], and pH

Color Ranges of Acid-Base Indicators

Acids React with Active Metals

Acids react with active metals to form salts and hydrogen gas.

$$
\begin{array}{lc}
\mathrm{Mg}+2 \mathrm{HCl} \rightarrow & \mathrm{MgCl}_{2}+\mathrm{H}_{2}(\mathrm{~g}) \\
\mathrm{Zn}+2 \mathrm{HCl} \rightarrow & \mathrm{ZnCl}_{2}+\mathrm{H}_{2}(\mathrm{~g}) \\
\mathrm{Mg}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow & \mathrm{MgSO}_{4}+\mathrm{H}_{2}(\mathrm{~g})
\end{array}
$$

Acids React with Carbonates

$2 \mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2(\mathrm{aq})}+\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})$

 $2 \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2(\mathrm{aq})}+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{CO}_{2}(\mathrm{~g})$

Effects of Acid Rain on Marble (calcium carbonate)

George Washington: BEFORE

George Washington: AFTER

Acids Neutralize Bases

Neutralization reactions ALWAYS produce a salt and water.

$$
\begin{aligned}
\mathrm{HCl}+\mathrm{NaOH} & \rightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} & \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O} \\
2 \mathrm{HNO}_{3}+\mathrm{Mg}(\mathrm{OH})_{2} & \rightarrow \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

BASES

- Bracken Cave, near San Antonio, Texas, is home to twenty to forty million bats.
- Visitors to the cave must protect themselves from the dangerous levels of ammonia in the cave.
- Ammonia is a byproduct of the bats' urine.

- You will learn why ammonia is considered a base.

Properties of Bases

\square Bases taste bitter
\square Bases effect indicators
\square Red litmus turns blue

- Phenolphthalein turns magenta
\square Bases have a pH greater than 7
\square Bases are proton (hydrogen ion, H^{+}) acceptors
\square Hydroxide donors $\left(\mathrm{OH}^{-1}\right)$
\square Solutions of bases feel slippery
\square Bases are electrolytes
\square Bases neutralize acids
-Bases emulsify fats and oils- SOAP

Examples of Bases

> Sodium hydroxide (lye), NaOH Draino
> Potassium hydroxide, KOH
$>$ Magnesium hydroxide, $\mathrm{Mg}(\mathrm{OH})_{2}$ $>$ Calcium hydroxide (lime), $\mathrm{Ca}(\mathrm{OH})_{2}$

TUMS
$>$ AND AMMONIA NH_{3} !

Bases Effect Indicators

Red litmus paper turns blue in contact with a base.

Phenolphthalein turns magenta in a base.

Ammonia a Base? How can it be???

- NH_{3} accepts a hydrogen ion to become $\mathrm{NH}_{4}{ }^{+}$
- $\mathrm{H}_{2} \mathrm{O}$ donates a hydogen ion to become OH -

$\mathrm{NH}_{3}(a q)+\mathrm{H}_{2} \mathrm{O}(l) \rightleftharpoons \mathrm{NH}_{4}{ }^{+}(a q)+\mathrm{OH}^{-}(a q)$

Ammonia
(hydrogen-ion acceptor, Bronsted-

Lowry base)

Water
(hydrogen-ion donor, BronstedLowry acid)

Ammonium Hydroxide ion ion
(makes the solution basic)

Bases Neutralize Acids

 Milk of Magnesia contains magnesium hydroxide, $\mathrm{Mg}(\mathrm{OH})_{2}$, which neutralizes stomach acid, HCl .$2 \mathrm{HCl}+\mathrm{Mg}(\mathrm{OH})_{2}$
\downarrow
$+2 \mathrm{H}_{2} \mathrm{O}$

Titration

- The concentration of an acid and base can be determined performed a neutralization reaction called a titration.
- The process of adding a known amount of solution of known concentration to determine the concentration
 of another solution is called titration.

To perform a titration:

1. Measure out a known volume of the acid solution of unknown concentration into an erlenmeyer flask.
2. Add a few drops of indicator. (For acid-base titrations, use phenolphthalein.)
3. Use a buret to add a base until the indicator changes color. (Phenolphthalein will change from clear to pink.)
4. Plot or perform calculation $\left(N_{A} V_{A}=N_{B} V_{B}\right)$

Titration

- The solution of known concentration is the standard solution.
- The point when the indicator changes color is the end point of the titration.
- The equivalence point is when the number of moles of hydrogen ions equals the number of moles of hydroxide ions.
- This happens right before the end point.

Titration

Acid solution with indicator

Added base is measured with a buret.

Color change shows neutralization.

Titration- a plot of volume added and pH helps determine the equivalence point

Titration of a Strong Acid with a Strong Base

Strong Acid/Strong Base Titration

Titration calculation

- 25.00 mls of a 0.25 M HCl solution are needed to completely neutralize 50.00 mls of an unknown sodium hydroxide solution.
What is the concentration of the base?

