Atomic Structure Chapters 4, 8, 18 .1-18.3

Bravo-15

What is an atom?

- Smallest unit of an element that retains all the properties of the element
- Can combine with other atoms to form compound
- Named by Democritus 400BC from the Greek word indivisible

Law of Conservation of Matter

- Mass is not created (gained) nor destroyed (lost) during ordinary physical and chemical reactions.
- Proven by Antoine Lavoisier 200 years ago

Law of Definite Proportions

- Chemical compound contains the same elements in exactly the same proportions by mass regardless of sample size or source of substance
- 1700’s Joseph Proust
- We all know the chemical formula for water is $\mathrm{H}_{2} \mathrm{O}$. It is essential for the body. The water from a Poland Spring bottle and from a your tap at home is always 2 hydrogen atoms to 1 oxygen atom

Law of Multiple Proportions

- Two elements may combine in different ratios to form different compounds.
- Water is composed of hydrogen and oxygen in a 2 to 1 ratio needed for body
- Hydrogen Peroxide is $\mathrm{H}_{2} \mathrm{O}_{2}$ in a ratio of 2 to 2 . Used as an antiseptic poisonous to body
- John Dalton

John Dalton

- English Scholar 1808founding father of the atomic theory
- (Didn’t know about subatomic particles or isotopes made adjustments and is now our modern atomic theory)

Modern Atomic Theory

- All matter is composed of atoms
* Atoms cannot be subdivided, created, or destroyed in ordinary chemical reactions. However, these changes CAN occur in nuclear reactions!
* Atoms of an element have a characteristic average mass which is unique to that element.
* Atoms of any one element differ in properties from atoms of another element

Discovery of the Electron

In 1897, J.J. Thomson used a cathode ray tube to deduce the presence of a negatively charged particle.

High voltage

Cathode ray tubes pass electricity through a gas that is contained at a very low pressure.

Conclusions from the Study of the Electron

\square Cathode rays have identical properties regardless of the element used to produce them. All elements must contain identically charged electrons.
\square Atoms are neutral, so there must be positive particles in the atom to balance the negative charge of the electrons
\square Electrons have so little mass that atoms must contain other particles that account for most of the mass

Thomson's Atomic Model

Thomson believed that the electrons were like plums embedded in a positively charged "pudding," thus it was called the "plum pudding" model.

Rutherford's Gold Foil Experiment

Gold foil

\square Alpha particles are helium nuclei
\square Particles were fired at a thin sheet of gold foil \square Particle hits on the detecting screen (film) are recorded

Try it Yourself!

In the following pictures, there is a target hidden by a cloud. To figure out the shape of the target, we shot some beams into the cloud and recorded where the beams came out. Can you figure out the shape of the target?

The Answers

Target \#1
Target \#2

OK Lets Think

- If we know opposite charges attract... and the same repel... the nucleus has positive charges together and the electrons are in the cloud and are negative on the outside...
- WHY DOESN'T THE NUCLEUS SPLIT OR
- WHY DOESN’T THE ATOM IMPLODE!

Rutherford's Findings

\square Most of the particles passed right through
A few particles were deflected
\square VERY FEW were greatly deflected

Discovery of Protons and Neutrons

\square By 1920 Ernest Rutherford finally determined that the nucleus contained positively charged particles called protons.
\square James Chadwick, in 1932, determined that the nucleus contains a neutral particle as well and he called it the neutron. He was Rutherford's lab partner and based his discovery off of the Gold Foil Experiment.

Max Planck

- figured out that when a solid substance is heated, it gives off energy in "chunks"
- later called quantums of energy
- quantum means fixed amount
- noticed that different substances released different

Bohr Model of the Atom

- In 1913, Neils Bohr published a theory that proposed that electrons traveled about the nucleus of the atom on ellintical naths called orbits. Tr system, with th electrostatic att

Miliken's Oil Drop Experiment

Oil drops were placed in an evacuated tube, then each drop had an electric charge applied.

The distance the drop fell was due to the mass of the electron

Atomic Particles

Particle	Charge	Mass \#	Location
Electron	-1	0	Electron cloud
Proton	+1	1	Nucleus
Neutron	0	1	Nucleus

The Atomic
 Scale

- Most of the mass of the atom is in the nucleus (protons and neutrons) - Electrons are found outside of the nucleus (the electron cloud)
- Most of the volume of the atom is empty space
" q " is a particle called a "quark"

About Quarks...

Protons and neutrons NOT fundamental par

Protons are made of two "up" quarks and one "down" quark.

Neutrons are made of one "up" quark and two "down" quarks.

Quarks are held toge by "gluons"

Structure within the Atom

[^0]0.1 mm is size and the cotire sorn woeld be shout 10 kn across.

Atomic Number

Atomic number (Z) of an element is the number of protons in the nucleus of each atom of that element.

Element	\# of protons	Atomic \# (Z)
Carbon	6	6
Phosphorus	15	15
Gold	79	79

Mass Number (A)

Mass number is the number of protons and neutrons in the nucleus of an isotope.

Mass \# = $\mathrm{p}^{+}+\mathrm{n}^{0}$

Nuclide Element-	p^{+}	n^{0}	e^{-}	Mass \#
Oxygen -18	8	$\mathbf{1 0}$	8	18
Arsenic - 75	$\mathbf{3 3}$	$\mathbf{4 2}$	33	75
Phosphorus - 31	$\mathbf{1 5}$	16	15	31

Valence Electrons- Outermost electrons - responsible for reactivity of the atom

Note: all the elements in the same group have the same number of valence electrons!

Therefore they are physically and chemically similar!

Valence electrons

- Metals have low numbers, will tend to lose electrons
 to become stable with octet
- Nonmetals high number of valence electrons- tend to gain more to become stable with octet

Lewis Dot Diagrams

- Shows the Kernal of the atom (all inner shells and nucleus) as the symbol and dots represent the outer electrons-

Isotopes

Isotopes are atoms of the same element having different masses due to varying numbers of neutrons.

Isotope	Protons	Electrons	Neutrons	Nucleus
Hydrogen-1 (protium)	1	1	0	+
Hydrogen-2 (deuterium)	1	1	1	+
Hydrogen-3 (tritium)	1	1	2	+

AtomicMasses

Atomic mass is the average of all the naturally isotopes of that element. Carbon $=12.011$

Isotope	Symbol	Composition of the nucleus	\% in nature
Carbon-12	${ }^{12} \mathrm{C}$	6 protons 6 neutrons	98.89%
Carbon-13	${ }^{13} \mathrm{C}$	6 protons 7 neutrons	1.11%
Carbon-14	${ }^{14} \mathrm{C}$	6 protons 8 neutrons	$<0.01 \%$

Nuclear Symbols - Nuclear

Shorthand - Shorthand Notation

Mass number

$$
\left(p^{+}+n^{0}\right)
$$

Element symbol

Atomic number
(number of p^{+})

Types of Radioactive Decay

* alpha production (α): helium nucleus

$$
{ }_{92}^{238} \mathrm{U} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{90}^{234} \mathrm{Th}
$$

- beta production (β):

$$
{ }_{90}^{234} \mathrm{Th} \rightarrow{ }_{91}^{234} \mathrm{~Pa}+{ }_{-1}^{0} \mathrm{e}
$$

Alpha particle

Alpha Radiation

Limited to VERY large nucleii.

${ }_{90}^{234} \mathrm{Th}$

Alpha Emissions

Beta

Radiation

Converts a neutron into a proton.

Beta Emissions

Types of Radioactive Decay

-gamma ray production (γ):

$$
{ }_{92}^{238} \mathrm{U} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{90}^{234} \mathrm{Th}+2{ }_{0}^{0} \gamma
$$

*positron production :

$$
{ }_{11}^{22} \mathrm{Na} \rightarrow{ }_{1}^{0} \mathrm{e}+{ }_{10}^{22} \mathrm{Ne}
$$

electron capture: (inner-orbital electron is
captured by the nucleus)

$$
{ }_{80}^{201} \mathrm{Hg}+{ }_{-1}^{0} \mathrm{e} \rightarrow{ }_{79}^{201} \mathrm{Au}+{ }_{0}^{0} \gamma
$$

Characteristics of Some Ionizing Radiations

Property	Alpha radiation	Beta radiation	Gamma radiation
Composition	Alpha particle (helium nucleus)	Beta particle (electron)	High-energy electromagnetic radiation
Symbol	$\alpha,{ }_{2}^{4} \mathrm{He}$	$\beta,{ }_{-1} \mathrm{e}$	γ
Charge	$2+$	1-	0
Mass (amu)	4	1/1837	0
Common source	Radium-226	Carbon-14	Cobalt-60
Approximate energy	$5 \mathrm{MeV}^{*}$	0.05 to 1 MeV	1 MeV
Penetrating power	Low (0.05 mm body tissue)	Moderate (4 mm body tissue)	Very high (penetrates body easily)
Shielding	Paper, clothing	Metal foil	Lead, concrete (incompletely shields)

[^1]
Deflection of Decay Particles

Nuclear Stability

Decay will occur in such a way as to return a nucleus to the band (line) of stability.

[^2]
Half-life Concept

Sample Half-Lives

Half-Lives and Radiation of Some Naturally Occurring Radioisotopes

Isotope	Half-life	Radiation em
Carbon-14	5.73×10^{3} years	β
Potassium-40	1.25×10^{9} years	β, γ
Radon-222	3.8 days	α
Radium-226	1.6×10^{3} years	α, γ
Thorium-230	7.54×10^{4} years	α, γ
Thorium-234	24.1 days	β, γ
Uranium-235	7.0×10^{8} years	α, γ
Uranium-238	4.46×10^{4} years	α

A radioactive nucleus reaches a stable state by a series of steps

Nuclear Fission and Fusion

- Fusion: Combining two light nuclei to form a heavier, more stable nucleus.

$$
{ }_{2}^{3} \mathrm{He}+{ }_{1}^{1} \mathrm{H} \rightarrow{ }_{2}^{4} \mathrm{He}+{ }_{1}^{0} \mathrm{e}
$$

- Fission: Splitting a heavy nucleus into two nuclei with smaller mass numbers.

$$
{ }_{0}^{1} \mathrm{n}+{ }_{92}^{235} \mathrm{U} \rightarrow{ }_{56}^{142} \mathrm{Ba}+{ }_{36}^{91} \mathrm{Kr}+3{ }_{0}^{1} \mathrm{n}
$$

Energy and Mass

Nuclear changes occur with small but measurable losses of mass. The lost mass is called the mass defect, and is converted to energy according to Einstein's equation:

$$
\Delta \mathrm{E}=\Delta \mathrm{mc}^{2}
$$

$\Delta \mathrm{m}=$ mass defect
$\Delta E=$ change in energy
$\mathrm{c}=$ speed of light

Fission

Fission Processes

A self-sustaining fission process is called a chain reaction.

A Fission Reactor

Fusion

Energy

Calculating the Molar Mass of a Compound

1 Find the chemical formula for the compound.
This is the number of atoms in each element that makes up the compound. For example, the
 is HCl ; fo glucose (atoms, a

Example: ins that
Hydrogen Chloride rogen HCL

Glucose $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

- Find the molar mass of each element in the compound. Multiply the element's atomic mass by the molar mass constant by the number of atoms of that element in the compound. Here's how you do it:
 wikiHow $2 n t$ is 1.007 grams
- For hyd per mole for hydrogen and 35.453 grams per mole for chlorine.
- For glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, the molar mass of each element is 12.0107 times 6 , or 72.0642 grams per mole for carbon; 1.007 times 12, or 12.084 grams per mole for hydrogen; and 15.9994 times 6 , or 95.9964 grams per mole for oxygen.

Molar Mass

- Add the molar masses of each element in the compound. This determines the molar mass for the compol

$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ $72.066+12.0948$ +95.9964
 $=180.1572 \mathrm{~g} / \mathrm{mol}$

- For hydrogen chloride, the molar mass is $1.007+$ 35.453 , or 36.460 grams per mole.
- For glucose, the molar mass is $72.0642+12.084+$ 95.9964 , or 180.1446 grams per mole.

Calculating Percent by Mass

- What is the percent by mass of metal in the compound copper II phosphate? ($\left.\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}\right)$
- Find total mass
- Find mass due to the part
- Divide mass of part by total
- Multiply by 100

$$
\begin{aligned}
& \quad\left(\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}\right) \\
& \mathrm{Cu} 3 \times 63.55^{\text {fuscripe }}+ \\
& \mathrm{P} \quad 2 \times 30.97+ \\
& \mathrm{O} 8 \times 16.00= \\
& \text { Total mass= } \quad 380.59 \mathrm{amu} \\
& \text { Mass of metal }=190.7 \mathrm{amu} \\
& \frac{190.7}{380.59} \times 100=50.1 \%
\end{aligned}
$$

Chemical Quantities-The Motit

1 dozen = 12
1 gross = 144
1 ream $=500$
1 mole $=6.02 \times 10^{23}$

There are exactly 12 grams of carbon-12 in one mole of carbon-12.

A mole is the atomic mass taken in grams of a substance

Diatomic Elements

In nature these elements exist in pairs.

Therefore the atomic mass is doubled

The SUPER SEVEN- There are seven of them, It starts with element 7-nitrogen- forms a seven and has a superhero hat of hydrogen!

Diatomic elements

H_{2}	Hydrogen
N_{2}	Nitrogen
O_{2}	Oxygen
F_{2}	Fluorine
Cl_{2}	Chlorine
Br_{2}	Bromine
I_{2}	Iodine

Avogadro's Number

6.02×10^{23} is called "Avogadro's Number" in honor of the Italian chemist Amadeo Avogadro (1776-1855).

Amadeo Avogadro

Ways to remember moles

Calculations with Moles: Converting moles to grams

How many grams of lithium are in 3.50 moles of lithium?

Calculations with Moles: Converting grams to moles

How many moles of lithium are in $\mathbf{1 8 . 2}$ grams of lithium?

18.2 g Li	1 mol Li
	$6.94 / \mathrm{Li}$

Calculations with Moles:

 Using Avogadro's NumberHow many atoms of lithium are in 3.50 moles of lithium?

3.50 nár Li	6.022×10^{23} atoms Li
	1 mol Li

Calculations with Moles:

Using Avogadro's Number

How many atoms of lithium are in 18.2 g of lithium?

$18.2 g \mathrm{Li}$	1 mol Li	6.022×10^{23} atoms Li
	6.94 g Li	1 m 6 Li

$(18.2)\left(6.022 \times 10^{23}\right) / 6.94=1.58 \times 10^{24}$ atoms Li

Finding Molar Mass of a Compound

- First decide how many of each type of atom you have. (Remember to multiply a subscript outside a parenthesis to the atoms within)
- Look up the individual masses on the P.T.
- Multiply the number of atoms by the mass
- Add all parts

What is the molar mass of copper II phosophate?
$\left(\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}\right)$

Cu $3 \times 63.55+$
P $2 \times 30.97+$
$08 \times 16.00=$
$380.59 \mathrm{~g} / \mathrm{mol}$

Converting to Moles with a Compound

Cindy masses 205.3 grams of $\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}$, how many moles does she have?

Using A \#

- How many moles are used for an experiment if 2.57×10^{23} molecules of $\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ are consumed?
- (again ignore MM and just divide by A\#)

$$
\begin{aligned}
2.57 \times 10^{23}{\text { molecules of } \mathrm{Cu}\left(\mathrm{PO}_{4}\right)_{2}} 1 \text { mole } \\
\qquad 6.022 \times 10^{23=}=.427 \mathrm{moles} \\
\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}
\end{aligned}
$$

Converting to Grams

- Charlie needs to use 2.50×10^{-4} moles of $\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ for an experiment. How many milligrams should she mass out?
-2.50×10^{-4} moles 380.59 grams
$1{\mathrm{~mole} \mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}}^{3}=9.51 \times 10^{-2} \mathrm{~g}$

Therefore: 95.1 milligrams

Using A\#

- How many kilograms are consumed in a reaction if 2.45×10^{24} molecules of $\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ are used?

Therefore: 1.55 kilograms

[^0]: If this picture wave draan wa the swe given by the protons
 and neutrons, tben the quaks and electrons would be less than

[^1]: ${ }^{+}\left(1 \mathrm{MeV}=1.60 \times 10^{-13} \mathrm{~J}\right)$

[^2]: Protons (Z)

