Chemical Reactions

All chemical reactions can be written as chemical equations.

What is a Chemical Reaction?

- Chemical reactions represent chemical changes
- A chemical change occurs when a substance has changed its identity
- For example: Combustion of propane in a barbeque
- Chemical reactions are represented in chemical equations.

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

Describing chemical reaction

- The way atoms are joined is changed
- Atoms aren't created or destroyed.
- Can be described several ways
- In a sentence
- Copper reacts with chlorine to form copper (II) chloride.
- In a word equation
- Copper + chlorine \rightarrow copper (II) chloride
- $\mathrm{Cu}_{(s)}+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow \mathrm{CuCl}_{2(\mathrm{aq})}$

Symbols used in equations

- (s) after the formula -solid $\mathrm{Cu}_{(s)}$
- (g) after the formula -gas $\mathrm{H}_{2}(\mathrm{~g})$
- (I) after the formula -liquid $\mathrm{H}_{2} \mathrm{O}_{(1)}$
- (aq) after the formula - dissolved in water, an aqueous solution. $\mathrm{CaCl}_{2 \text { (aq) }}$
- used after a product indicates a gas (same as (g)) O_{2}
- \downarrow used after a product indicates a solid (same as (s)) $\quad \mathrm{CaCo}_{3} \downarrow$

Parts of a chemical reaction and symbols

$$
\underset{\text { Reactants- starting materials yeilds/ Products- ending materials }}{\text { makes }} \mathrm{CH}_{4(\mathrm{~s})}+2 \mathrm{CO}_{2(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}
$$

(g) Gas (s) solid (I) liquid (aq) aqueous-dissolved in water gas product solid product (when above the a row, heated

Anything written above the arrow is a catalyst (makes reaction go faster)
Subscripts represent \# atoms in molecule and CAN NOT be changed

Coefficent- number in front of formula represents number of molecules in reaction

Summary of Symbols

Reactants and Products Symbol	
(\boldsymbol{s}) or $(\boldsymbol{c r})$	solid or crystal
(\boldsymbol{l})	liquid
(\boldsymbol{g})	gas
$(\boldsymbol{a q})$	in aqueous solution (dissolved in water)
\downarrow	solid precipitate product forms
\uparrow	gaseous product forms

Reaction Conditions	
Symbol	Meaning
\longrightarrow	"produces" or "yields," indicating result of reaction
\rightleftarrows	reaction in which products can reform into reactants; final result is a mixture of products and reactants
$\xrightarrow{\Delta}$ or $\xrightarrow{\text { heat }}$	reactants are heated
$\xrightarrow{1.0 \times 10^{8} \mathrm{kPa}}$	pressure at which reaction is carried out
$\xrightarrow{0^{\circ} \mathrm{C}}$	temperature at which reaction is carried out
$\xrightarrow{\mathrm{Pd}}$	chemical formula of a catalyst added to speed up a reaction
$\xrightarrow{-}$	electrolysis

Law of Conservation of Mass

- States that matter is neither created nor destroyed in a chemical reaction
- Means that all atoms present in the reactants must be accounted for among the products
- There must be the same number and type of atom on each side of the chemical equation
- This means that we must balance chemical equations

$$
\begin{aligned}
& \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+\mathrm{O}_{2}>\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+\mathbf{5} \mathrm{O}_{2}>3 \mathrm{CO}_{2}(\mathrm{~g})+\mathbf{4} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{aligned}
$$

Unbalanced and Balanced Equations

reactants products

Guide to Balancing Equations

Guide to Balancing a Chemical Equation

STEP 1

Write an equation using the correct formulas of the reactants and products.

STEP 2

Count the atoms or ions of each element in reactants and products.

STEP 3

Use coefficients to balance each element.

> STEP 4
> Check the final equation
> for balance.

Balancing Chemical Equations

STEP 1 Write the equation with the correct formulas.

$$
\mathrm{N}_{2}(g)+\mathrm{H}_{2}(g) \longrightarrow \mathrm{NH}_{3}(g)
$$

STEP 2 Determine if the equation is balanced. No, not all of the atoms are balanced.

2N 1N
2 H 3 H
STEP 3 Balance with coefficients in front of formulas.

$$
\begin{gathered}
\text { Balance } \mathrm{N} \\
\mathrm{~N}_{2}(g)+\mathrm{H}_{2}(g) \xrightarrow{\longrightarrow} \mathrm{NH}_{3}(g)
\end{gathered}
$$

Balancing Chemical Equations (continued)

STEP 3 (continued)
Balance H
$\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \quad 2 \mathrm{NH}_{3}(g)$

STEP 4 Check that atoms of each element are equal in reactants and products.

$$
\begin{aligned}
& 2 \mathrm{~N}=2 \mathrm{~N} \\
& 6 \mathrm{H}=6 \mathrm{H}
\end{aligned}
$$

Equations with Polyatomic Ions

Example 1

Please balance the following equations:
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow \mathrm{NF}_{3}(\mathrm{~g})$
$\mathrm{Kl}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{KNO}_{3}(\mathrm{aq})+\mathrm{PbI}_{2}(\mathrm{~s})$
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NF}_{3}(\mathrm{~g})$
$2 \mathrm{KI}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{KNO}_{3}(\mathrm{aq})+\mathrm{PbI}_{2}(\mathrm{~s})$

Coefficients \& Moles

- Coefficients in a chemical equation represent the mole ratio of the reactants and products in a chemical reaction.
- One can think if it as representing the recipe of the chemical reaction.
- More on this in Unit 9 on Stoichiometry
-Making a bicycle requires all parts to be placed in the correct order without losing or gaining parts
-The numbers are called coefficients-small whole numbers that are placed in front of the formulas in an equation in order to balance it.
-This is a balanced equation for making a bicycle.

Converting Word Equations into Balanced

 Formula Equations- Chemical equations can be represented in words and as formulas.
- If a word equation is given, it should be converted into a balanced formula equation. Solid ammonium carbonate decomposes to yield ammonia gas, water vapor, and carbon

> dioxide gas
> $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}(\mathrm{~s}) \Rightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}_{2}(\mathrm{~g})$
> $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}(\mathrm{~s}) \Rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}_{2}(\mathrm{~g})$

Types of Reactions

- There are five types of chemical reactions we will talk about:

1. Synthesis reactions
2. Decomposition reactions
3. Single displacement reactions
4. Double Replacement reactions
5. Combustion reactions

- You need to be able to identify the type of reaction and predict the product(s)

Steps to Writing Reactions

Some steps for doing reactions
Identify the type of reaction

Predict the product(s) using the type of reaction as a model

Write the formulas for the compounds

Use Coefficients to Balance it

Don't Forget>Diatomic Elements

- Certain elements exist in pairsdiatomic elements
- Super 7-
- Form a seven, there are seven of them, and it begins with nitrogen with the atomic number of 7

> In a compound, it can't be a diatomic element because it's not an element anymore, it's a compound!

$$
\begin{array}{r}
\\
\mathrm{N}_{2} \mathrm{O}_{2} \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\mathrm{Cl}_{2} \\
\mathrm{I}_{2}
\end{array}
$$

How to recognize which type

- Look at the reactants
- Element(E), Compound(C)
- $E+E$

Synthesis

- C

Decomposition

- $E+C$ single replacement

- $C+C \quad$ Double replacement
- Look at the Products
- $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$

Combustion

Examples

${ }^{-} \mathrm{H} 2+\mathrm{O} 2 \rightarrow$

Synthesis

$\mathrm{H}_{2} \mathrm{O} \rightarrow$ Decomposition
${ }^{\text {AgNO3 }+\mathrm{NaCl} \rightarrow \quad \text { Double replacement }}$
$\mathrm{Zn}_{\mathrm{n}}+\mathrm{H} 2 \mathrm{SO} 4 \rightarrow \quad$ single replacement
${ }^{-} \mathrm{HgO} \rightarrow \quad$ Decomposition
${ }^{-} \mathrm{KBr}+\mathrm{Cl} 2 \rightarrow \quad$ Single replacement
${ }^{-} \mathrm{Mg}(\mathrm{OH}) 2+\mathrm{H}_{2} \mathrm{SO}_{3} \rightarrow$
Double replacement

Examples

$\mathrm{HNO} 3+\mathrm{KOH} \rightarrow \quad$ Double replacement
CaPO4 $\rightarrow \quad$ Decomposition
$\mathrm{AgBr}+\mathrm{Cl} 2 \rightarrow \quad$ Single replacement
$\mathrm{Zn}+\mathrm{O2} \rightarrow \quad$ Synthesis
$\mathrm{HgO}+\mathrm{Pb} \rightarrow \quad$ Single replacement
$\mathrm{Cu}(\mathrm{OH}) 2+\mathrm{KClO} 3 \rightarrow \quad$ Double replacement

Synthesis Reactions
 - $A+B \rightarrow A B$

1. Synthesis Reactions

- Synthesis reactions occur when two substances (generally elements) combine and form a compound. (Sometimes these are called combination, direct union or addition reactions.)

reactant + reactant $\rightarrow \mathbf{1}$ product

- Basically: $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{AB}$
- Example: $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
- Example: $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$

Practice

- Predict the products. Write and balance the following synthesis reaction equations.
- Sodium metal reacts with chlorine gas

$$
\mathrm{Na}_{(\mathrm{s})}+\mathrm{Cl}_{2(\mathrm{~g})} \rightarrow
$$

- Solid Magnesium reacts with fluorine gas

$$
\mathrm{Mg}_{(\mathrm{s})}+\mathrm{F}_{2(\mathrm{~g})} \rightarrow
$$

- Aluminum metal reacts with fluorine gas

$$
\mathrm{Al}_{(\mathrm{s})}+\mathrm{F}_{2(\mathrm{~g})} \rightarrow
$$

Decomposition Reactions $A X \rightarrow A+X$

3. Decomposition Reactions

- Decomposition reactions occur when a compound breaks up into the elements or in a few to simpler compounds
- 1 Reactant \rightarrow Product + Product
- In general: $A B \rightarrow A+B$
- Example: $2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}$
- Example: $\mathrm{Mg}\left(\mathrm{ClO}_{3}\right)_{2} \rightarrow \mathrm{MgCl}_{2}+3 \mathrm{O}_{2}$

Decomposition Exceptions

- Carbonates and chlorates are special case decomposition reactions that do not go to the elements.
- Carbonates $\left(\mathrm{CO}_{3}{ }^{2-}\right)$ decompose to carbon dioxide and a metal oxide
- Example: $\mathrm{CaCO}_{3} \rightarrow \mathrm{CO}_{2}+\mathrm{CaO}$

Chlorate Decomposition

- Chlorates $\left(\mathrm{ClO}_{3}^{-}\right)$decompose to oxygen gas and a metal chloride
- Example: $2 \mathrm{Al}\left(\mathrm{ClO}_{3}\right)_{3} \rightarrow 2 \mathrm{AlCl}_{3}+9 \mathrm{O}_{2}$

Note:

- There are other special cases, but we will not explore those in Chemistry I

4. Double Replacement Reactions

- Double Replacement Reactions occur when a metal replaces a metal in a compound and a nonmetal replaces a nonmetal in a compound

To Double Replace or Not to Double Replace? That is the Question?

- Will only happen if one of the products
- doesn't dissolve in water and forms an insoluble solid (s), precipitate (ppt).
- or is a gas that bubbles out.
- or water forms, $\mathrm{H}_{2} \mathrm{O}$ (neutralization reaction).

Practicing the Replacement

Lead(II) Nitrate(aq) + Calcium Bromide(aq) \rightarrow

Potassium Sulfate $(\mathrm{aq})+$ Silver Nitrate $(\mathrm{aq}) \rightarrow$

Hydrogen Chlorate(aq) + Sodium Hydroxide(aq) $\boldsymbol{\rightarrow}$

Practicing the Replacement

Lead(II) Nitrate(aq) + Calcium Bromide(aq) \rightarrow Calcium Nitrate + Lead(II) Bromide

Potassium Sulfate $(\mathrm{aq})+$ Silver Nitrate $(\mathrm{aq}) \boldsymbol{\rightarrow}$ Silver Sulfate + Potassium Nitrate

Hydrogen Chlorate $(\mathrm{aq})+$ Sodium Hydroxide $(\mathrm{aq}) \rightarrow$ Sodium Chlorate + Hydrogen
Hydroxide

Solubility Rules Practice

Predict whether each of the following will be soluble (aq) or an insoluble ppt (s):

- KCl
- $\mathrm{Na}_{2} \mathrm{SO}_{4}$
- CaSO_{4}
- AgSO_{4}
- $\mathrm{Na}_{2} \mathrm{CO}_{3}$
- MgS

Solubility Rules Practice

- $\mathrm{KCl}_{\text {(aq) }}$
- $\mathrm{Na}_{2} \mathrm{SO}_{4(\mathrm{aq})}$
- $\mathrm{CaSO}_{4(\mathrm{~s})}$
- $\mathrm{AgSO}_{4(\mathrm{~s})}$
- $\mathrm{Na}_{2} \mathrm{CO}_{3(\mathrm{aq})}$
- $\mathrm{MgS}_{(s)}$

Predicting Phases

Lead(II) Nitrate(aq) + Calcium Bromide $(\mathrm{aq}) \rightarrow$ Calcium Nitrate + Lead(II) Bromide

Potassium Sulfate(aq) + Silver Nitrate(aq) $\boldsymbol{\rightarrow}$ Silver Sulfate + Potassium Nitrate

Hydrogen Chlorate $(\mathrm{aq})+$ Sodium Hydroxide $(\mathrm{aq}) \rightarrow$ Sodium Chlorate + Hydrogen Hydroxide

Predicting Phases

Lead(II) Nitrate(aq) + Calcium Bromide(aq) \rightarrow Calcium Nitrate $(\mathrm{aq})+$ Lead(II) Bromide(s)

Potassium Sulfate(aq) + Silver Nitrate(aq) $\boldsymbol{\rightarrow}$ Silver Sulfate(s) + Potassium Nitrate(aq)

Hydrogen Chlorate(aq) + Sodium Hydroxide(aq) \rightarrow Sodium Chlorate(aq) + Hydrogen
Hydroxide(I)

Convert to Balanced Formula Equations

Lead(II) Nitrate(aq) + Calcium Bromide $(\mathrm{aq}) \rightarrow$ Calcium Nitrate $(\mathrm{aq})+$ Lead(II) Bromide(s)

$$
\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{CaBr}_{2}(\mathrm{aq}) \Rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{PbBr}_{2}(\mathrm{~s})
$$

Potassium Sulfate(aq) + Silver Nitrate $(\mathrm{aq}) \rightarrow$ Silver Sulfate(s) + Potassium Nitrate(aq)

$$
\mathrm{K}_{2} \mathrm{SO}_{4}(\mathrm{aq})+2 \mathrm{AgNO}_{3}(\mathrm{aq}) \rightarrow \mathrm{Ag}_{2} \mathrm{SO}_{4}(\mathrm{~s})+2 \mathrm{KNO}_{3}(\mathrm{aq})
$$

Hydrogen Chlorate(aq) + Sodium Hydroxide(aq) \rightarrow Sodium Chlorate(aq) + Hydrogen
Hydroxide(I)

$$
\mathrm{HClO}_{3}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{NaClO}_{3}(\mathrm{aq})+\mathrm{HOH}(\mathrm{l})
$$

Aqueous Solutions

- Aqueous ionic solutions exist as all free ions in solution.
- Free ions in solution can conduct electricity
- Solutions that conduct electricity are called electrolytes.

Total Ionic Equations

- Once you write the molecular equation (synthesis, decomposition, etc.), you should check for reactants and products that are soluble or insoluble
- We usually assume the reaction is in water
- We can use a solubility table to tell us what compounds dissolve in water.
- If the compound is soluble (does dissolve in water), then splits the compound into its component ions
- If the compound is insoluble (does NOT dissolve in water), then it remains as a compound

Total Ionic Equations

Molecular Equation:
$\mathrm{K}_{2} \mathrm{CrO}_{4}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \quad \mathrm{PbCrO}_{4}+2 \mathrm{KNO}_{3}$
Soluble
Soluble
Insoluble
Soluble
Total Ionic Equation:
$2 \mathrm{~K}^{+}+\mathrm{CrO}_{4}^{-2}+\mathrm{Pb}^{+2}+2 \mathrm{NO}_{3}^{-} \rightarrow$
$\mathrm{PbCrO}_{4}(\mathrm{~s})+2 \mathrm{~K}^{+}+2 \mathrm{NO}_{3}^{-}$

Total Ionic Equations

- Any aqueous ionic compounds are written as ions while pure substances, solids, liquids, and gases, are not.
- lons must show the proper charge and number of ions.
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{CaBr}(\mathrm{aq}) \rightarrow \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+$ $\mathrm{PbBr}_{2}(\mathrm{~s})$

$$
\begin{array}{r}
\mathrm{Pb}^{2+}(\mathrm{aq})+2 \mathrm{NO}_{3}{ }^{1-}(\mathrm{aq})+\mathrm{Ca}^{2+}(\mathrm{aq})+2 \mathrm{Br}^{1-}(\mathrm{aq}) \rightarrow \\
\mathrm{Ca}{ }^{2+}(\mathrm{aq})+2 \mathrm{NO}_{3}{ }^{1-}(\mathrm{aq})+\mathrm{PbBr}_{2}(\mathrm{~s})
\end{array}
$$

Net Ionic Equations

- These are the same as total ionic equations, but you should cancel out ions that appear on BOTH sides of the equation
Total Ionic Equation:
$2 \mathrm{~K}^{+}+\mathrm{CrO}_{4}^{-2}+\mathrm{Pb}^{+2}+2 \mathrm{NO}_{3}^{-} \rightarrow$

$$
\mathrm{PbCrO}_{4}(\mathrm{~s})+2 \widehat{\mathrm{~K}^{+}}+2 \mathrm{NO}_{3}^{-}
$$

Net Ionic Equation:
$\mathrm{CrO}_{4}{ }^{-2}+\mathrm{Pb}^{+2} \rightarrow \mathrm{PbCrO}_{4}(\mathrm{~s})$
Spect lons $\mathrm{K}^{+}, \mathrm{NO}_{3}{ }^{-1}$

Net Ionic Equations

- Try this one! Write the molecular, total ionic, and net ionic equations for this reaction: Silver nitrate reacts with Lead (II) Chloride in hot water.

Molecular:

Net Ionic:

Formation of Precipitate

Check Solubility Chart for products!

Calcium Phosphate (s)+ Lithium Nitrate (aq)
Bal Eq:
$3 \mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})+} 2 \mathrm{Li}_{3} \mathrm{PO}_{4(\mathrm{aq})} \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2(\mathrm{~s})+} 6 \mathrm{LiNO}_{3(\mathrm{aq})}$

Net Ionic Equation:
$3 \mathrm{Ca}_{(\mathrm{aq})}^{+2}+2 \mathrm{PO}_{4}^{-3}{ }_{(\mathrm{aq})} \rightarrow \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2(\mathrm{~s})}$
Spectators:
$\mathrm{Li}^{+}{ }_{\mathrm{AQ}} \mid \mathrm{NO}_{3}-(\mathrm{aq})$

Neutralization!

Formation of Hydrogen Hydroxide Dash on your table

- Hydrogen Chloride (aq) + Sodium Hydroxide $_{(A Q)} \rightarrow$
- Hydrogen Hydroxide (I) + Sodium Chloride (aq)
- Bal Eq: $\mathrm{HCl}(\mathrm{aq})+\mathrm{NaOH}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+\mathrm{NaCl}(\mathrm{aq})$
- Net ionic: $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}-(\mathrm{aq})\left\langle 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right.$
- Spectators: $\mathrm{Na}^{+}(\mathrm{aq}), \mathrm{Cl}-(\mathrm{aq})$

Formation of a gas !

When one of the products forms hydrogen carbonate

- Hydrogen Carbonate decomposes quickly to water and carbon dioxide! (It is a dash on your table!)
- Lithium Carbonate ${ }_{\text {baq }}+$ Hydrogen $^{\text {Chloride }}{ }_{\text {baq }} \rightarrow$

Lithium Chloride ${ }_{(a n)}$ Water $_{11}+$ Carbon Dioxide $_{(6)}$ Bal Eq:
$3 \mathrm{Li}_{2} \mathrm{CO}_{3(\mathrm{aq})+}+2 \mathrm{H}_{3} \mathrm{PO}_{4(\mathrm{aq})} \rightarrow 2 \mathrm{Li}_{3} \mathrm{PO}_{4 \mathrm{aq})+} 3 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}+3 \mathrm{CO}_{2(\mathrm{~g})}$

Decomp: $\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq}) \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{I})+} \mathrm{CO}_{2(\mathrm{~g})}$
Spectators: $\quad \mathrm{Li}^{+}{ }_{\text {ac }} \& \mathrm{PO}_{4}{ }^{-3}{ }_{(\mathrm{aq})}$

Both Remain Soluble!

- Lithium Nitrate + Sodium Chloride \rightarrow

Lithium Chloride (aq) + SodiumNitrate (aq)
NO RXN ALL REMAIN AS IONS!
Bal Eq:
$\mathrm{LiNO}_{3}(\mathrm{aq})+\mathrm{NaCl}(\mathrm{aq}) \backsim \mathrm{LiCl}(\mathrm{aq})+\mathrm{NaNO}_{3}(\mathrm{aq})$

NO NET IONIC!
Spectators: LIST ALL!

$$
\mathrm{Li}^{+}(\mathrm{aq}), \mathrm{Na}^{+}{ }_{(\mathrm{aq})}, \mathrm{NO}_{3}^{-1}(\mathrm{aq}) \mathrm{Cl}^{-1}(\mathrm{AQ})
$$

Practice

- Predict the products. Balance the equation

1. $\mathrm{HCl}_{(\mathrm{aq})}+\mathrm{AgNO}_{3(\mathrm{aq)}} \rightarrow$
2. $\mathrm{CaCl}_{2(\mathrm{aq})}+\mathrm{Na}_{3} \mathrm{PO}_{4(\mathrm{aq)}} \rightarrow$
3. $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2(\mathrm{aq})}+\mathrm{BaCl}_{2(\mathrm{aq)}} \rightarrow$
4. $\mathrm{FeCl}_{3(\mathrm{aq)}}+\mathrm{NaOH}_{(\mathrm{aq)}} \rightarrow$
5. $\mathrm{H}_{2} \mathrm{SO}_{4(\mathrm{aq})}+\mathrm{NaOH}_{(\mathrm{aq})} \rightarrow$
6. $\mathrm{KOH}_{(\mathrm{aq})}+\mathrm{CuSO}_{4(\mathrm{aq)}} \rightarrow$

Single Replacement Reactions $A+B X \rightarrow A X+B$

2. Single Replacement Reactions

- One element replaces another in a compound.
- A metal can replace a metal (+)
a nonmetal can replace a nonmetal (-).
- element + compound \rightarrow product + product

$$
\begin{aligned}
& A+B x \rightarrow A x+B \quad \text { (if } A \text { is a metal) } \\
& y+B x \rightarrow B y+x \quad \text { (if } y \text { is a nonmetal) }
\end{aligned}
$$

(remember the cation always goes first!)

When $\mathrm{H}_{2} \mathrm{O}$ splits into ions, it splits into H^{+}and OH^{-}(not $\mathrm{H}+$ and O^{-2} !!)

Metal Replacing a Metal

- The elemental metal must be higher in the activity series in order to replace the metal in the compound:
- Barium + Copper II Nitrate \rightarrow Barium Nitrate + Copper
- Bal EQ:

$$
\begin{gathered}
\mathrm{Ba}(\mathrm{~s})+\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow \mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})+\mathrm{Cu}(\mathrm{~s}) \\
\text { If NOT no rxn }
\end{gathered}
$$

- Barium + Lithium Nitrate \rightarrow NO RXN!

Metal + Water

- MUST READ PARAGRAPH on Activity Series AND DETERMINE STATE OF WATER!!!! Will go with higher form!
- Lithium Steam \rightarrow Lithium Hydroxide $_{(\mathrm{aq})}+$ Hydrogen $_{(\mathrm{g})}$
- Bal Eq:
- $2 \mathrm{Li}(\mathrm{s})+2 \mathrm{HOH}(\mathrm{g}) \rightarrow 2 \mathrm{LiOH}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$

Metal and Acid

read the paragraph and check!

- Acids begin with hydrogen but don't end in hydroxide!
- Zinc metal reacts with aqueous Hydrogen Chloride (hydrochloric acid)

$$
\mathrm{Zn}_{(\mathrm{s})}+2 \mathrm{HCl}_{(\mathrm{aq})} \rightarrow \mathrm{ZnCl}_{2}+\mathrm{H}_{2(\mathrm{~g})}
$$

Note: Zinc replaces the hydrogen ion in the reaction

Nonmetal- Nonmetal Replacement check activity series of nonmetal!

- Sodium chloride solid reacts with fluorine gas

$$
2 \mathrm{NaCl}_{(\mathrm{s})}+\mathrm{F}_{2(\mathrm{~g})} \rightarrow 2 \quad \mathrm{NaF}_{(\mathrm{s})}+\mathrm{Cl}_{2(\mathrm{~g})}
$$

Note that fluorine replaces chlorine in the compound

Practice

- Predict the products. Then, write and balance the following decomposition reaction equations:
- Solid Lead (IV) oxide decomposes

$$
\mathrm{PbO}_{2(\mathrm{~s})} \rightarrow \quad \mathrm{Pb}+\mathrm{O}_{2}
$$

- Aluminum nitride decomposes

$$
2 \mathrm{AlN}_{(\mathrm{s})} \rightarrow 2 \mathrm{Al}+\mathrm{N}_{2}
$$

Practice

Identify the type of reaction for each of the following synthesis or decomposition reactions, and write the balanced equation:
$\mathrm{N}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow$
$\mathrm{BaCO}_{3(\mathrm{~s})} \rightarrow \quad$ Nitrogen monoxide
$\mathrm{Co}_{(s)}+\mathrm{S}_{(\mathrm{s})} \rightarrow$

(make Co be +3)

$\mathrm{NH}_{3(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{CO}_{3(\mathrm{aq})} \rightarrow$
$\mathrm{NI}_{3(\mathrm{~s})} \rightarrow$

YOU MUST MAKE SURE THE REACTION WILL GO!

- Check the reactivity series of the metals or nonmetal
- Check to see environment (acidic, water, etc)
- Activity Series Sheet

Combustion Reactions

- In general:
$\mathrm{C}_{\mathrm{x}} \mathrm{H}_{\mathrm{y}}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
- Products in combustion are ALWAYS carbon dioxide and water. (although incomplete burning does
 cause some by-products like carbon monoxide)
- Combustion is used to heat homes and run automobiles (octane, as in
 gasoline, is $\mathrm{C}_{8} \mathrm{H}_{18}$)

5. Combustion Reactions

- Combustion reactions occur when a hydrocarbon reacts with oxygen gas.
- This is also called burning!!! In order to burn something you need the 3 things in the "fire triangle":

1) A Fuel (hydrocarbon)
2) Oxygen to burn it with
3) Something to ignite the reaction (spark)

Fire Triangle

Tbe Tell-Tale Face of Carbon Monoxide Poisoning

 Combustion Reactions

 Combustion Reactions

 FLU-LIKE SYMPTOMS

 FLU-LIKE SYMPTOMS}

1. Headache
2. Fatigue or Weakness
3. Muscle Aches or Pains
4. Nausea or Vomiting
5. Diarrhea or Bloating
6. Confusion or Memory Loss
7. Dizziness or Incoordination
8. Difficult or Shallow Breathing
9. Rapid Heart Beat or Chest Pain
10. Changes in Sensory Sensitivity to

Lights, Sounds, Odors, Tastes or Touch
AT RISK FROM CARBON MONOXIDE

- Co is most harmful to pregnant women, childre the elderly and anyone with a chronic disorder
affecting the blood, brain, heart, lungs or musc (s such as Anemia, Alzheimer's, Angina, Asthma or AlS.
- CO also worsens and may cause Autism, Chronic Fatigue Syndrome, Depression, Fibromyalgia, Impotence, Multiple chemical Sensitivity, Parkinsonism and Psychiatric Disorders.

SOURCES OF CARBON MONOXIDE

- External from combustion sources such as vehicles (especially in winter and in buildings with attached garages), furnaces, water heaters winter and in buildings with attached garages), furnaces, water heaters,
space heaters, ovens, tobacco smoke, explosives and gasoline-powered space heaters, ovens, tobacco smoke, explosives and gasoline-p
appliances of all kinds, especially generators and compressors. appliances of all kinds, especially generators and compressors.
- Internal from breakdown of heme and inhaled or ingested dichloromethan also known as methylene chloride, a common ingredient in solvents and spray cans.

EFFECTS OF CARBON MONOXIDE

- CO binds more tightly than oxygen to heme proteins, especially hemoglobin,
myoglobin and cytochromes, impairing function of brain, musde, liver and other organs.
- CO increases blood sugar, acidosis and polycythemia while decreasing metabolism, blood pressure and body temperature; at high levels, CO may cause coma or death within minutes.
- CO acts as a neurotransmitter modulating heart rate, respiration, blood vessel tone, leaming, memory, sexual function and sensory sensitization (or habituation) to odors, light and sounds.
- CO poisoning in pregnancy may result in birth defects, mental retardation and low birth weight.
- Reoxygenation may cause brain lipid peroxidation with chronic neurological effects appearing later

TREATMENT OF CARBON MONOXIDE POISONING

- 100% oxygen daily - hyperbaric if severe or normobaric, humidified and via a partial non-rebreather mask. Continue daily treatments of 1 to 2 hours until symptoms resolve and levels of carboxyhemoglobin. CO in exhaled breath and the arterio-venous gap in the partial pressure of oxygen all returm to normal. - In non-smokers, nomal COHb is under 1.6%, nomal breath CO is under 4ppm, and the normal arteriovenous PO2 gap is over 60 mmHg (venous sample drawn from antecibital fossa without a toumiquet). O Copyright 2000, Albert Donnax, All right reserved.

Edgar Allen Poe's drooping eyes and mouth are potential signs of CO poisoning.

Combustion

- Example

$$
\text { - } \mathrm{C}_{5} \mathrm{H}_{12}+8 \mathrm{O}_{2} \rightarrow 5 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} 6
$$

- Write the products and balance the following combustion reaction:
- $\mathrm{C}_{10} \mathrm{H}_{22}+\mathrm{O}_{2} \rightarrow$

Mixed Practice

- State the type, predict the products, and balance the following reactions:

1. $\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$
2. $\mathrm{C}_{6} \mathrm{H}_{12}+\mathrm{O}_{2} \rightarrow$
3. $\mathrm{Zn}+\mathrm{CuSO}_{4} \rightarrow$
4. $\mathrm{Cs}+\mathrm{Br}_{2} \rightarrow$
5. $\mathrm{FeCO}_{3} \rightarrow$
