- Electrons and Periodic Behavior

Whoaah! Take a look at the wear in those atomic orbitals! I'm surprised the electrons are still attached to this baby.I Those protons look distinctly loose as well...

Weeell.....if we order The parts today and have them couriered across, and work at it around the clock, we're looking at three, maybe four weeks, at a total entropy cost to the Universe of about...

Quantum mechanics.
Cartoon courtesy of NearingZero.net

Wave-Particle Duality

JJ Thomson won the Nobel prize for describing the electron as a particle.
His son, George Thomson won the Nobel prize for describing the wave-like nature of the electron.

The Wave-like Electron

The electron propagates through space as an energy wave. To understand the atom, one must understand the behavior of electromagnetic waves.

Louis deBroglie

Electromagnetic radiation propagates through space as a wave moving at the speed of light.

$C=$ speed of light, a constant ($3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$) $v=$ frequency, in units of hertz (hz, sec ${ }^{-1}$) $\lambda=$ wavelength, in meters

Types of electromagnetic radiation:

Max Planck

- figured out that when a solid substance is heated, it gives off energy in "chunks"
- later called quantums of energy
- quantum means fixed amount
- noticed that different
 substances released different "chunks" of energy

The energy (E) of electromagnetic radiation is directly proportional to the frequency (v) of the radiation.

$$
E=h v
$$

$E=$ Energy, in units of Joules ($\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2}$)
$h=$ Planck's constant ($6.626 \times 10-34 \mathrm{~J} \cdot \mathrm{~s}$)
$v=$ frequency, in units of hertz (hz, sec ${ }^{-1}$)

Long
Wavelength
=

Low Frequency

Low ENERGY

Short Wavelength

High Frequency

$$
=
$$

High ENERGY

Spectroscopic analysis of the visible spectrum...
produces all of the colors in a continuous spectrum

How does matter produce light?

- When an electron in the ground state (lowest energy level that is natural) is promoted to an excited (higher) state it is temporary!!! The electron will fall back down to the ground state releasing light! (when viewed through a spectroscope- line emission spectra- gives a fingerprint of the atom)

Spectroscopic analysis of the hydrogen spectrum...

produces a "bright line" spectrum

Electron transitions involve jumps of definite amounts of energy.

This produces bands of light with definite wavelengths.

Electron transitions for the Hydrogen atom

How does light behave as a particle?

- Photoelectric effectwhen light of a particular frequency hits the surface of a metal an electron is ejected off the surface!

The Bohr Model of the Atom

Neils Bohr

I pictured electrons orbiting the nucleus much like planets orbiting the sun.

But I was

wrong!
They're more
like bees
around a hive

Werner Heisenberg
"One cannot simultaneously determine both the position and momentum of an electron."

You can find out where the electron is, but not where it is going.

You can find out where the electron is going, but not where it is!

Electron Configuration

Simplest way to write which energy levels and sublevels are filled within the atom (How many e^{-}and where you can find them)

How do electrons fill in an atom? The Diagonal Rule

- Sublevel \# of electrons held

S

 2P 6

D
10

F
14

How to fill

- 1 Find total \# of electrons
- 2 Write subshells in order of diagonal rule
- 3. Fill in subshells till all electrons are used
- 4. Last subshell may be partially filled.

Standard Notation of Fluorine

Number of electrons in the sub level $2,2,5$

Blocks in the Periodic Table

\square
Representative s-block elements
\square Transition metals
\square Representative p-block elements
$\square f$-Block metals

$f^{1} f^{2} f^{3} f^{4} f^{5} f^{6} f^{7} f^{8} f^{9} f^{10} f^{11} f^{12} f^{13} f^{14}$ fill its 3d sublevel (more stable)

Noble Gas Electron Configuration

- Even shorter way to write how electrons are distributed in atom
- Neon $1 s^{2} 2 s^{2} 2 p^{6}$
- Aluminum $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$
- Shows all electrons in shells common to a Noble Gas as the symbol in a bracket [symbol] then list leftover electrons in their energy levels and shells
- As you can see Al has the same distribution of inner electrons as neon therefore it can be written as:
- $[\mathrm{Ne}] 3 s^{2} 3 p^{3}$

Steps for Noble Gas Configuration

1 Find element on periodic table.
2 Find number of electrons
3 Find Group 8 element from period above target element
4 Write group 8 element symbol in [brackets]
5 Subtract noble gases electrons from initial elements
6 Start filling from S subshell of initial elements period \# til all electrons are placed

Element	Configuration notation	Orbital notation	Noble gas notation
Lithium	$\mathbf{1 s} \mathbf{2}^{\mathbf{2}}{ }^{\mathbf{1}}$	$\frac{1}{15} \frac{1}{2 s} \quad-\quad \frac{}{2 p}$	[He]2s ${ }^{1}$
Beryllium	1s ${ }^{\mathbf{2}} \mathbf{s}^{\mathbf{2}}$		[He]2s ${ }^{2}$
Boron	1s $\mathbf{2}^{\mathbf{2}} \mathrm{s}^{\mathbf{2}} \mathrm{p}^{\mathbf{1}}$		[He]2s ${ }^{2} \mathbf{p}^{1}$
Carbon	$\mathbf{1 s} \mathbf{2}^{\mathbf{2}} \mathrm{s}^{\mathbf{2}} \mathrm{p}^{\mathbf{2}}$		$[\mathrm{He}] 2 \mathrm{~s}^{2} \mathrm{p}^{2}$
Nitrogen	$\mathbf{1 s} \mathbf{2}^{\mathbf{2}} \mathrm{s}^{\mathbf{2}} \mathrm{p}^{\mathbf{3}}$	$\frac{\uparrow \downarrow}{1 \mathrm{~s}} \frac{\uparrow \downarrow}{2 \mathrm{~s}}+\frac{\uparrow}{2 p}+\frac{\uparrow}{4}$	$[\mathrm{He}] 2 \mathrm{~s}^{2} \mathrm{p}^{3}$
Oxygen	$1 s^{2} 2 s^{2} p^{4}$	$\frac{\uparrow \downarrow}{1 s} \frac{\uparrow \downarrow}{2 s} \quad \uparrow \downarrow \quad \frac{1}{2 p} \quad \uparrow$	[He]2s ${ }^{2} \mathbf{p}^{4}$
Fluorine	$1 s^{2} 2 s^{2} p^{5}$		[He]2s ${ }^{2} p^{5}$
Neon	$1 s^{2} 2 s^{2} p^{6}$		[He]2s ${ }^{2} p^{6}$

Orbital Notation or Diagrams

Simply use horizontal or vertical lines and arrows instead of exponents to represent the electrons
1 arrow = 1electron Each line holds 2 electrons
\# of lines for S P D F must hold same number of electrons as in longhand electron configuration

$$
\begin{aligned}
& S=2 e^{-} \text {so } 1 \text { line } P=6 e^{-} \text {so } 3 \text { lines } d=10 e^{-} \text {so } 5 \text { lines } \\
& f=14 e^{-} \text {so } 7 \text { lines }
\end{aligned}
$$

Rules for electron filling:

- Aufbaus Rule-must fill the lowest energy level available first!
- Hunds Rule -orbitals of equal energy sublevel will be occupied by one electron before a second one may enter (pairing up)

E

- No one can have seconds until everyone from same row has gone through once!!

Pauli Exclusion Principle

Wolfgang Pauli

Two electrons occupying the same orbital must have opposite spinsthis eliminates 2 electrons within the same atom having the same QNS

How do electrons fill in an atom? The Diagonal Rule

Things you must accept to do orbital Diagrams (energy diagrams)

- Energy builds further away from the nucleus
- Each line represents an orbital
- Each orbital can hold only two electrons
- We as a group will decide to place positive spin arrows in first..this is arbitrary NOT A RULE Just so all our QNS are the same
- Each electron is represented by an arrow
- In an orbital the two electrons must point in different directions
- Remember from the diagonal rule $4 s$ fills before 3d breaking Aufbau's Rule

Orbital Diagrams

Energy Levels, Sublevels, Electrons

Energy Level (n)	Sublevels in main energy level $(n$ sublevels)	Number of orbitals per sublevel	Number of Electrons per sublevel	Number of electrons per main energy level $\left(2 n^{2}\right)$
1	s	1	2	2
2	s	1	2	8
3	p	3	6	
4	s	1	2	18
	p	3	6	
	s	5	10	
	p	1	2	32
	d	3	6	

Quantum Mechanical Model of the Atom

Mathematical laws can identify the regions outside of the nucleus where electrons are most likely to be found.

These laws are beyond the scope of this class...VERY SIMPLY PUT... each electron has four numbers to describe the probability of finding the electron within the atom...

Schrodinger Wave Equation

Equation for probability of a single electron being found along a single axis (x-axis)
Erwin Schrodinger

What are they?

- Characterization of the orbital that an electron occupies
- Describes the following:
- distance from the nucleus
- shape
- position with respect to the 3 dimensional axis
- direction of spin of the electron

4 Quantum Numbers

$n=$ Principle Quantum Number
distance from the nucleus (Denotes Size)
values 1-7 (note 7 periods on the P.T.)
$L=$ Sublevel
shape of the cloud
values $0 \rightarrow 3 \quad(0=s, 1=p, 2=d, 3=f)$
$\mathrm{m}=$ magnetic
orientation about the axis values $-3 \rightarrow 3$
S= spin
Direction of movement within orbital
$+1 / 2$ or $-1 / 2$

Electron Energy Level (Shell)

Generally symbolized by n, it denotes the probable distance of the electron from the nucleus.
n is numerically represented by positive integers. (1-7)

Number of electrons that can fit in a shell:
$2 n^{2}$

Angular Momentum

- Abbreviated by ℓ
- Describes the shape of an orbital by using a number and letter designation.
- Determined by all values between
- ($n-1$) through 0

ℓ	Letter
0	s
1	p
2	d
3	f

There are predicted shapes out to $\ell=6$ Which would be a i orbital but don't exsist in nature.

An orbital is a region within an energy level where there is a probability of finding an electron. This is a probability diagram for the s orbital in the first energy level...

Distance from nucleus (r)
Orbital shapes are defined as the surface that contains 90% of the total electron probability.

Sizes of s orbitals

Orbitals of the same shape (s, for instance) grow larger as n increases...

Nodes are regions of low probability within an orbital.

Shapes

- s orbital is spherical
- p orbital looks like a dumbell
- d orbitals look like 2 dumbells
- forbitals look like flowers

The s orbital has a spherical shape centered around the origin of the three axes in space.

s orbital shape

P orbital shape

There are three dumbbell-shaped p orbitals in each energy level above $n=1$, each assigned to its own axis (x, y and z) in space.

Things get a bit more shopesmplicated with the five d orbitals that are found in the d sublevels beginning with $n=3$. To remember the shapes, think of "double dumbells"
...and a "dumbell with a donut"!

Shape of f orbitals

Magnetic Quantum Number

- Abbreviated by m_{1} or simply m
- Represents the 3 dimensional orientation of an orbital (how your orbital is pointed)
- Assumes all values from $-\ell \ldots 0 . . .+\ell$

- If $n=1$
- Then $\ell=0$
- So $m_{1}=0$
- Think of spinning a basketball on your finger...does it really change where it is in 3D??

- For a p orbital...
- $n=2$
- $\quad \ell=1$
$-m_{1}=-1,0,+1$
- The p orbital can exist in different planes in 3D

Spin Quantum Number

- Abbreviated by m_{s} or s
- Uses $+1 / 2$ or $-1 / 2$
- Indicates the direction of spin of an electron
- Electrons in the same orbital MUST have opposite spins!

