

Ideal Gas \& Gas Stoichiometry

Avogadro’s Law

$V \propto$ number of moles (n)
$V=$ constant $\mathrm{x} n$
$V_{1} / n_{1}=V_{2} / n_{2}$

Ammonia burns in oxygen to form nitric oxide (NO) and water vapor. How many volumes of NO are obtained from one volume of ammonia at the same temperature and pressure?

4
$\mathrm{NH}_{3}+5$
1 mole NH_{3}

At constant T and P
1 volume NH_{3}
\longrightarrow
1 volume NO

The conditions $0^{\circ} \mathrm{C}$ and 1 atm are called standard

 temperature and pressure (STP).Experiments show that at STP, 1 mole of an ideal gas occupies 22.414 L .

$$
P V=n R T
$$

$$
R=\frac{P V}{n T}=\frac{(1 \mathrm{~atm})(22.414 \mathrm{~L})}{(1 \mathrm{~mol})(273.15 \mathrm{~K})}
$$

$$
R=0.082057 \mathrm{~L} \cdot \mathrm{~atm} /(\mathrm{mol} \cdot \mathrm{~K})
$$

What is the volume (in liters) occupied by 49.8 g of HCl at STP?

$$
\begin{aligned}
T & =0^{\circ} \mathrm{C}=273.15 \mathrm{~K} \\
P & =1 \mathrm{~atm}
\end{aligned}
$$

$$
n=49.8 \mathrm{~g} \times \frac{1 \mathrm{~mol} \mathrm{HCl}}{36.45 \mathrm{~g} \mathrm{HCl}}=1.37 \mathrm{~mol}
$$

$V=30.6 \mathrm{~L}$

Density (d) Calculations

$$
d=\frac{m}{V}=\frac{P \mathcal{M}}{R T} \quad m \text { is the mass of the gas in } \mathrm{g} ~
$$

Molar Mass (\mathcal{M}) of a Gaseous Substance
$\mathcal{M}=\frac{d R T}{P} \quad d$ is the density of the gas in g / L

Ideal Gas Equation

Boyle's law: | | 1 |
| :--- | :--- |
| | | (at constant n and T)

Charles' law: $V \alpha T$ (at constant n and P)

Avogadro's law: $\mathrm{V} \alpha n$ (at constant P and T)
$V \alpha \frac{n T}{P}$
$V=$ constant $\mathrm{x} \quad=\frac{n T}{P} \quad \frac{n T}{P} \quad R$ is the gas constant

$$
P V=n R T
$$

Determine Pressure:

$\mathrm{P}=\frac{\mathrm{nRT}}{\mathrm{V}}=\quad$ Determine the pressure in atm exerted by 12.0 grams of sulfur dioxide gas at $22 .{ }^{\circ} \mathrm{C}$ in a 750.0 ml vessel.

1. Change all units:

$$
\mathrm{n} \mathrm{SO}_{2}=12.0 \text { grams of } \mathrm{SO}_{2} \left\lvert\, \frac{1 \text { mole SO}_{2}}{64.0 \mathrm{~g}}\right. \|=0.188 \text { moles } \mathrm{SO}_{2}
$$

$$
\begin{aligned}
& \mathrm{T}=22+273=295 \mathrm{~K} \\
& \mathrm{~V}=0.750 \mathrm{~L}
\end{aligned}
$$

2. Plug into equation

$$
\mathrm{P}=\frac{(0.188 \text { moles })(0.0821)(295 \mathrm{~K})}{0.750 \mathrm{~L}}=
$$

Determine Volume:

$\mathrm{V}=\frac{\mathrm{nRT}}{\mathrm{P}}=$ Determine the volume occupied by 5.00 grams of sulfur dioxide at $10 .{ }^{\circ} \mathrm{C}$ exerting a pressure of 12.5 Kpa .

1. Change all units:
$n \mathrm{SO}_{2}=5.00$ grams of $\mathrm{SO}_{2} \left\lvert\, \frac{1 \text { mole } \mathrm{SO}_{2}}{64.0 \mathrm{~g}}\right. \|=0.0781$ moles SO_{2}

$$
\begin{aligned}
& \mathrm{T}=10 .+273=285 \mathrm{~K} \\
& \mathrm{P}=12.5\left|\frac{1 \mathrm{~atm}}{101.3 \mathrm{KPa}}\right| \quad=\quad 0.123 \mathrm{~atm}
\end{aligned}
$$

2. Plug into equation
$\mathrm{V}=\frac{(0.0781 \mathrm{moles})(0.0821)(285 \mathrm{~K})}{0.123 \mathrm{~atm}}=14.8 \mathrm{~L}$

Determine Temperature:

$T=\frac{P V}{n R}$

 Determine the temperature in Celsius of a 2.50 liter vessel that contains 14.00 grams of sulfur dioxide and exerts a pressure of 255.2 Kpa.1. Change all units:

$$
\mathrm{n} \mathrm{SO}_{2}=14.00 \text { grams of } \mathrm{SO}_{2}\left|\frac{1 \mathrm{~mole} \mathrm{SO}_{2}}{64.0 \mathrm{~g}}\right|=0.219 \mathrm{moles} \mathrm{SO}_{2}
$$

$$
\mathrm{P}=255.2 / 101.3 \mathrm{KpPa}=2.52 \mathrm{~atm}
$$

2. Plug into equation

$$
\mathrm{T}=\frac{(2.52 \mathrm{~atm})(2.50 \mathrm{~L})}{(0.0821)(0.219 \mathrm{moles})}=\quad 350 . \mathrm{K}
$$

77. celsius

Determine sample size:

$\mathrm{n}=\frac{\mathrm{PV}}{\mathrm{RT}}$ Determine the mass of a sample of sulfur
dioxide in a 750.0 milliliter vessel that exerts
a pressure of 875 mmHg at $10 .{ }^{\circ} \mathrm{C}$.

1. Change all units:
$\mathrm{P} \quad 875 \mathrm{mmHg}=\left|\frac{1 \mathrm{~atm}}{760 \mathrm{mmHg}}\right|=1.15 \mathrm{~atm}$

$$
\mathrm{T}=10 .+273=283 \mathrm{~K} \quad 750.0 \mathrm{ml}=0.7500 \mathrm{~L}
$$

2. Plug into equation

$$
\mathrm{n}=\frac{(1.15 \mathrm{~atm})(0.7500 \mathrm{~L})}{(0.0821)(283 \mathrm{~K})}=0.0371 \mathrm{moles}
$$

3. Solve for grams nX mm
0.0371 moles SO_{2}
$64.0 \mathrm{~g} \mathrm{SO}_{2}=$ 1 mole
2.38
$\mathrm{g} \mathrm{SO}_{2}$

Determine the Gas in a vessel:

PV A label has fallen off a 550.0 milliliter vessel that
$\mathrm{n}=\frac{\mathrm{PT}}{\mathrm{RT}}$ exerts a pressure of 775 mmHg at $\mathbf{2 0 .}{ }^{\circ} \mathrm{C}$. The empty cylinder has a mass of 987.00 grams. The cylinder with the gas in it has a mass of 988.49 grams.. Determine the MM of the gas.

1. Change all units:
$P \quad 775 \mathrm{mmHg}=\left|\frac{1 \mathrm{~atm}}{760 \mathrm{mmHg}}\right|=1.02 \mathrm{~atm}$
$\mathrm{~T}=20 .+273=293 \mathrm{~K} \quad 550.0 \mathrm{ml}=0.5500 \mathrm{~L}$
2. Plug into equation

$$
\mathrm{n}=\frac{(1.02 \mathrm{~atm})(0.550 \mathrm{~L})}{(0.0821)(293 \mathrm{~K})}=0.0233 \text { moles }
$$

3. Solve for MM by dividing grams of sample by moles
$\frac{1.49 \mathrm{~g}}{0.023 \mathrm{~m} \mathrm{~mole}^{2}}=63.9 \mathrm{~g} / \mathrm{mole}$
Could the gas be sulfur dioxide?

Gas Stoichiometry

Gases are affected by temperature and pressure and must be handled differently.

Gases are affected the same way therefore in a chemical reaction in which the reactants and products are gases the volumes the molar volume of a gas may be used as a conversion factor

Gas Stoichiometry

- Many chemical reactions involve gases as a reactant or a product
- Gas Stoichiometry - the procedure for calculating the volume of gases as products or reactants
- Gases also have a molar volume (L/mol) rather than concentration.
- This is the conversion factor used to convert (litres of gas) to (moles of gas)
- The Ideal Gas Law (PV = nRT) may also be required to:
A) find the number of moles of reactant
B) Find the V, P, or T of the product

Molar Volume

- Molar volume is the same for all gases at the same temperature and pressure
- Remember, all gases have the same physical properties!
- At STP, molar volume $=22.4 \mathrm{~L} / \mathrm{mol}\left(101.325 \mathrm{kPa}\right.$ and $\left.\mathrm{o}^{\circ} \mathrm{C}\right)$

This can be used as a conversion factor just like molar mass!

At STP, one mole of gas has a volume of 22.4 L , which is approximately the volume of 11 "empty" 2 L pop bottles.

Example \# 1

- What volume of ammonia gas can be produced at $22.0^{\circ} \mathrm{C}$ and 787 mmHg given 25.0 milliliters of each reagent?
- First write the balanced equation!
- $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
- Note: the coefficients represent equivalent volumes of the gases at the same temperature and pressure.
- Next determine the limiting reagent:

Example \#2

- Hydrogen gas is produced when sodium metal is added to water. What mass of sodium is necessary to produce 20.0L of hydrogen at STP?
- Remember: 22.4L/mol for STP

$$
\begin{aligned}
& 2 \mathrm{Na}_{(\mathrm{s})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})} \rightarrow 2 \mathrm{NaOH}_{(\mathrm{aq})}+\mathrm{H}_{2(\mathrm{~g})} \\
& \mathrm{m}=\text { ? } \quad \mathrm{V}=20.0 \mathrm{~L} \\
& 22.99 \mathrm{~g} / \mathrm{mol} \quad 22.4 \mathrm{~L} / \mathrm{mol} \\
& \text { 20.0/ } \times \frac{1 \mathrm{~m} \mathrm{\phi l}}{22.4 \ell} \times \frac{2 \mathrm{~mol} \mathrm{Na}}{1 \mathrm{~mol} \mathrm{H}} \times \frac{22.99 \mathrm{~g}}{1 \text { hol Na }}=41.1 \mathrm{~g} \mathrm{Na}_{(\mathrm{s})}
\end{aligned}
$$

**Remember - molar volume is the conversion factor for gases just like molar mass is the conversion factor in gravimetric stoichiometry

Example \#3

- If 300.0 g of propane burns in a gas barbecue, what volume of oxygen measured at STP is required for the reaction?
- Remember: 1 mol of any gas occupies 22.4 L at STP

$$
\begin{aligned}
& \mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}+5 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 3 \mathrm{CO}_{2(\mathrm{~g})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \\
& \mathrm{m}=300 \mathrm{~g} \quad \mathrm{~m}=\text { ? } \\
& 44.11 \mathrm{~g} / \mathrm{mol} \quad 22.4 \mathrm{~L} / \mathrm{mol} \\
& 300.0 \mathrm{of} \times \frac{1 \mathrm{~mol}}{44.11 g} \times \frac{5 \mathrm{~mol} \mathrm{O}_{2}}{1 \mathrm{mbl} \mathrm{C}_{3} \mathrm{H}_{8}} \times \frac{22.4 \mathrm{~L}}{1 \mathrm{~mol}}=762 \mathrm{LO}_{2(\mathrm{~g})}
\end{aligned}
$$

**Remember - molar volume is the conversion factor for gases just like molar mass is the conversion factor in gravimetric stoichiometry

Gas Stoichiometry Summary

1. Write a balanced chemical equation and list the measurements, unknown quantity symbol, and conversion factors for the measured and required substances.
2. Convert the measured quantity to a chemical amount using the appropriate conversion factor
3. Calculate the chemical amount of the required substance using the mole ratio from the balanced chemical equation.
4. Convert the calculated chemical amount to the final quantity requested using the appropriate conversion factor. Non- STP

1. Solve $P V=n R T$ for moles A
 $$
\mathrm{n}_{\mathrm{A}}=\mathrm{PV} / \mathrm{RT}
$$

2. Solve Stoich Expression for Grams B

Moles A $|$| \# Moles B | MM B |
| :--- | :--- |
| | \# Moles A |

Example \#

If the conditions are not STP, the molar volume cannot be used! You must use the ideal gas law to find the gas values using moles determined from stoichiometry

- 5.50×10^{3} liters of ammonia formed at 450 kPa and $80 .{ }^{\circ} \mathrm{C}$. How many grams of hydrogen were required?

$$
\begin{aligned}
& 2 \mathrm{~N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \rightarrow \quad 2 \mathrm{NH}_{3(\mathrm{~g})} \\
& m=X \text { Grams } \quad V=5.50 \times 103 \mathrm{I} \\
& \mathrm{M}=2.02 \mathrm{~g} / \mathrm{mol} \quad \mathrm{P}=450 \mathrm{kPA} \\
& \mathrm{~T}=353.13 \mathrm{~K} \\
& \mathrm{n}=\underline{\mathrm{PV} / R T}=\frac{(4.44 \mathrm{~atm})\left(5.50 \times 10^{3} \text { liters }\right)}{\left(0.0821^{\mathrm{atm} \cdot \mathrm{~L}} / \underline{\mathrm{mol} \cdot \mathrm{~K})}(4.44 \mathrm{~atm})\right.} \\
& =\rightarrow 6.70 \times 10^{4} \text { moles } \mathrm{NH}_{3(\mathrm{~g})} \\
& 6.70 \times 10^{4} \text { moles } \mathrm{NH}_{3(\mathrm{~g})} \left\lvert\, \begin{array}{||l||l|}
& 3 \mathrm{H}_{2} \\
\hline 2 \mathrm{NH}_{3} & 1.02 \text { grams } \mathrm{mole} \mathrm{H}_{2}
\end{array}\right. \|=203 \text { kilograms }_{2(\mathrm{~g})}
\end{aligned}
$$

Example \#

 volume cannot be used! You must use the ideal gas law to find the gas values using moles determined from stoichiometry- What volume of ammonia at 450 kPa and $80^{\circ} \mathrm{C}$ can be obtained from the complete reaction of 7.5 kg of hydrogen with nitrogen?

$$
\begin{array}{rl}
2 \mathrm{~N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} & \rightarrow \\
\mathrm{m}=7500 \mathrm{~g} & \\
\mathrm{M}=2.02 \mathrm{NH} / \mathrm{mol} & \mathrm{~m}=? \\
& \mathrm{P}=450 \mathrm{kPA} \\
& \mathrm{~T}=353.13 \mathrm{~K}
\end{array}
$$

$$
7500 \not \& \times \frac{1 \mathrm{mov}}{2.02 \not \&} \times \frac{2}{3 \mathrm{H}_{2}} \mathrm{NH}_{3}=2475.2475 \mathrm{~mol} \mathrm{NH}_{3(\mathrm{~g})}
$$

$$
\mathrm{PV}=\mathrm{nRT} \rightarrow V=\frac{\mathrm{nRT}}{\mathrm{P}}=\frac{(2475.2475 \mathrm{mpl})\left(0.0821^{\mathrm{atm}} \cdot /_{\mathrm{mg}} / \cdot \mathrm{K}\right)(353.1 / \mathrm{K})}{(4.44 \mathrm{ax}) \mathrm{m})}
$$

$$
=16150.10 \mathrm{~L} \rightarrow 1.6 \times 10^{4} \mathrm{~L} \text { of } \mathrm{NH}_{3}(\mathrm{~g})
$$

Given Grams going to Volume of a gas non- STP

- 1. Solve stoich expression to change grams of material A to moles of gas B
- Grams A $\left\lvert\,$| | 1 Mol A |
| :---: | :---: |
| \# moles B | |
| | MM A |
| \#moles A | |$=\right.$ Moles B
- 2. Solve $P V=n R T$ for V_{B} $V_{B}=\underline{n}_{\underline{B}} \underline{R T}$

Gas Stoichiometry

What is the volume of CO_{2} produced at $37^{\circ} \mathrm{C}$ and 1.00 atm when 5.60 g of glucose are used up in the reaction:
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(s)+6 \mathrm{O}_{2}(g) \quad-6 \Leftrightarrow \mathrm{O}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(\Omega)$
$\mathrm{g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \longrightarrow \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \longrightarrow \mathrm{~mol} \mathrm{CO}_{2} \longrightarrow V \mathrm{CO}_{2}$
$5.60 \mathrm{~g}_{6} \mathrm{H}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \times \frac{1 \mathrm{mote}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{180 \mathrm{~g}-6 \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}} \times \frac{6 \mathrm{~mol} \mathrm{co}_{2}}{1 \mathrm{motC}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}=0.187 \mathrm{~mol} \mathrm{CO}_{2}$

Your Turn To Try

Gas Stoichiometry \#1

If reactants and products are at the same conditions of temperature and pressure, then mole ratios of gases are also volume ratios.

$$
3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \quad \rightarrow \quad 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

$\begin{array}{llll}3 \text { moles } \mathrm{H}_{2} & +1 \text { mole } \mathrm{N}_{2} & \rightarrow & 2 \text { moles } \mathrm{NH}_{3} \\ 3 \text { liters } \mathrm{H}_{2} & +1 \text { liter } \mathrm{N}_{2} & \rightarrow & 2 \text { liters } \mathrm{NH}_{3}\end{array}$

Gas Stoichiometry \#2

How many liters of ammonia can be produced when 12 liters of hydrogen react with an excess of nitrogen?

$$
\begin{aligned}
& 3 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g}) \quad \rightarrow \quad 2 \mathrm{NH}_{3}(\mathrm{~g}) \\
& \begin{array}{l|l}
12 L \mathrm{H}_{2} & 2 \mathrm{LNH}_{3}=8.0 \mathrm{LNH}
\end{array}
\end{aligned}
$$

Gas Stoichiometry \#3 At STP

How many liters of oxygen gas, at STP, can be collected from the complete decomposition of 50.0 grams of potassium chlorate?

$$
2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})
$$

Gas Stoichiometry \#4

How many liters of oxygen gas, at $37.0^{\circ} \mathrm{C}$ and 0.930 atmospheres, can be collected from the complete decomposition of 50.0 grams of potassium chlorate?

$$
2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})
$$

$50.0 \mathrm{~g} \mathrm{KCiO}_{3}$	$1 \mathrm{~mol} \cdot \mathrm{KClO}_{3}$	3 mol O
	$122.55 \mathrm{~g} \mathrm{KClO}_{3}$	$2 \mathrm{~mol} \cdot \mathrm{KClO}_{3}$

\& \mathrm{~mol} \mathrm{O}\end{aligned}\)
$V=\frac{n R T}{P}=\frac{(0.612 \mathrm{~mol})\left(0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(310 \mathrm{~K})}{0.930 \mathrm{~atm}}=16.7 \mathrm{~L}$

Gas Stoichiometry \#5

15.5 liters of oxygen gas was collected at $37.0^{\circ} \mathrm{C}$ and 0.930 atmosphere when potassium chlorate decomposed. How many grams were used?

$$
2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{~s})+3 \mathrm{O}_{2}(\mathrm{~g})
$$

$\mathrm{n}=\frac{\mathrm{PV}}{\mathrm{RT}}=\frac{(15.0 \mathrm{~L}) 0.930 \mathrm{~atm}}{\left(0.0821 \frac{\mathrm{~L} \cdot \mathrm{~atm}}{\mathrm{~mol} \cdot \mathrm{~K}}\right)(310 \mathrm{~K})}=\underset{\mathrm{mol} \mathrm{O}_{2}}{0.548}$

0.548	$2 \mathrm{~mol} \mathrm{KClO}_{3}$	122.55 g KClO
moles O_{2}	3 mol O	$1 \mathrm{~mol} \mathrm{KClO}_{3}$

