\qquad
\qquad

CHEMFILE MINI-GUIDE TO PROBLEM SOLVING

Stoichiometry of Gases

Now that you have worked with relationships among moles, mass, and volumes of gases, you can easily put these to work in stoichiometry calculations. Many reactions have gaseous reactants, gaseous products, or both.

Reactants and products that are not gases are usually measured in grams or kilograms. As you know, you must convert these masses to amounts in moles before you can relate the quantities by using a balanced chemical equation. Gaseous products and reactants can be related to solid or liquid products and reactants by using the mole ratio, just as solids and liquids are related to each other.

Reactants and products that are gases are usually measured in liters. If the gas is measured at STP, you will need only Avogadro's law to relate the volume and amount of a gas. One mole of any gas at STP occupies 22.4 L . If the gas is not at STP, you will need to use the ideal gas law to determine the number of moles. Once volume has been converted to amount in moles you can use the mole ratios of products and reactants to solve stoichiometry problems involving multiple phases of products and reactants.

$$
n=\frac{P V}{R T}
$$

If the problem which you are trying to solve involves only gases, there is a simpler way of dealing with the stoichiometric amounts. Look again at the expression for the ideal gas law above; the molar amount of a gas is directly related to its volume. Therefore, the mole ratios of gases given by the coefficients in the balanced equation can be used as volume ratios of those gases to solve stoichiometry problems. No conversion from volume to amount is required to determine the volume of one gas from the volume of another gas in a balanced chemical equation.

There is one condition that must be observed. Gas volumes can be related by mole ratios only when the volumes are measured under the same conditions of temperature and pressure. If they are not, then the volume of one of the gases must be converted to the conditions of the other gas. Usually you will need to use the combined gas law for this conversion.

$$
V_{2}=\frac{V_{l} P_{I} T_{2}}{T_{1} P_{2}}
$$

\qquad Date \qquad Class \qquad

CHEMFILE MINI-GUIDE TO PROBLEM SOLVING

General Plan for Solving Gas Stoichiometry Problems

SAMPLE PROBLEM 1

Ammonia can react with oxygen to produce nitrogen and water according to the following equation.

$$
4 \mathrm{NH}_{3}(g)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{~N}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(l)
$$

If 1.78 L of O_{2} reacts, what volume of nitrogen will be produced? Assume that temperature and pressure remain constant.

Name \qquad Date \qquad Class \qquad

CHEMFILE MINI-GUIDE TO PROBLEM SOLVING

SOLUTION

1. $A N A L Y Z E$

- What is given in the problem?
the balanced equation, the volume of oxygen, and the fact that the two gases exist under the same conditions
- What are you asked to find? the volume of N_{2} produced

Items	Data	
Substance	O_{2}	$\mathrm{~N}_{2}$
Coefficient in balanced equation	3	2
Molar mass	NA	NA
Moles	NA	NA
Mass of substance	NA	NA
Volume of substance	1.78 L	$? \mathrm{~L}$
Temperature conditions	NA	NA
Pressure conditions	NA	NA

2. PLAN

- What steps are needed to calculate the volume of N_{2} formed from a given volume of O_{2} ?

The coefficients of the balanced equation indicate the mole ratio of O_{2} to N_{2}. The volume ratio is the same as the mole ratio when volumes are measured under the same conditions.

3. COMPUTE

$$
1.78 \mathrm{~L}_{2} \times \frac{2 \mathrm{~L} \mathrm{~N}_{2}}{3 \mathrm{~L} \theta_{2}}=1.19 \mathrm{~L} \mathrm{~N}_{2}
$$

4. eVALUATE

- Are the units correct? Yes; units canceled to give L_{2}.
\qquad Date \qquad Class \qquad

CHEMFILE MINI-GUIDE TO PROBLEM SOLVING

- Is the number of significant figures correct?
- Is the answer reasonable?

Yes; the number of significant figures is correct because the data were given to three significant figures.
Yes; the volume of N_{2} should be $2 / 3$ the volume of O_{2}.

PRACTICE

1. In one method of manufacturing nitric acid, ammonia is oxidized to nitrogen monoxide and water.

$$
4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \rightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(l)
$$

What volume of oxygen will be used in a reaction of $2800 \mathrm{~L}^{\text {of } \mathrm{NH}_{3} \text { ? What }}$ volume of NO will be produced? All volumes are measured under the same conditions.

$$
\begin{aligned}
\text { ans: } & 3500 \mathrm{~L} \mathrm{O}_{2} \\
& 2800 \mathrm{~L} \mathrm{NO}^{2}
\end{aligned}
$$

2. Fluorine gas reacts violently with water to produce hydrogen fluoride and ozone according to the following equation.

$$
3 \mathrm{~F}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow 6 \mathrm{HF}(g)+\mathrm{O}_{3}(g)
$$

What volumes of O_{3} and HF gas would be produced by the complete reaction of $3.60 \times 10^{4} \mathrm{~mL}$ of fluorine gas? All gases are measured under the same ans: $1.20 \times 10^{4} \mathrm{~mL} \mathrm{O}_{3}$ conditions.
$7.20 \times 10^{4} \mathrm{~mL} \mathrm{HF}$

SAMPLE PROBLEM 2

Ethylene gas burns in air according to the following equation.

$$
\mathrm{C}_{2} \mathrm{H}_{4}(g)+3 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)
$$

If 13.8 L of $\mathrm{C}_{2} \mathrm{H}_{4}$ measured at $21^{\circ} \mathrm{C}$ and 1.038 atm burns completely with oxygen, calculate the volume of CO_{2} produced, assuming the CO_{2} is measured at $44^{\circ} \mathrm{C}$ and 0.989 atm .

SOLUTION

1. $A N A L Y Z E$

- What is given in the the balanced equation, the volume problem? of ethylene, the conditions under which the ethylene was measured, and the conditions under which the CO_{2} is measured

Name \qquad Date \qquad Class \qquad

CHEMFILE MINI-GUIDE TO PROBLEM SOLVING

- What are you asked to find? the volume of CO_{2} produced as measured at the specified conditions

Items	Data	
Substance	$\mathrm{C}_{2} \mathrm{H}_{4}$	CO_{2}
Coefficient in balanced equation	1	2
Molar mass	NA	NA
Moles	NA	NA
Mass of substance	NA	NA
Volume of substance	13.8 L	$? \mathrm{~L}$
Temperature conditions	$21^{\circ} \mathrm{C}=294 \mathrm{~K}$	$44^{\circ} \mathrm{C}=317 \mathrm{~K}$
Pressure conditions	1.083 atm	0.989 atm

2. PLAN

- What steps are needed to Use the volume ratio of $\mathrm{C}_{2} \mathrm{H}_{4}$ to CO_{2} calculate the volume of CO_{2} to calculate the volume of CO_{2} at formed from the complete burning of a given volume of $\mathrm{C}_{2} \mathrm{H}_{4}$? the same conditions as $\mathrm{C}_{2} \mathrm{H}_{4}$. Convert to the volume of CO_{2} for the given conditions using the combined gas law.

Volume of $\mathrm{C}_{2} \mathrm{H}_{4}$
in L at initial conditions
multiply by the
volume ratio,
$\frac{\mathrm{CO}_{2}}{\mathrm{C}_{2} \mathrm{H}_{4}}$

Volume of CO_{2} in L at final conditions
 convert from the initial temperature and pressure to the final temperature and pressure
Volume of CO_{2} in L at the same conditions as initial $\mathrm{C}_{2} \mathrm{H}_{4}$ $\mathrm{L}_{\mathrm{C}_{2} \mathrm{H}_{4}}^{\text {given }} * \times \frac{\begin{array}{c}\text { volume ratio, } \frac{\mathrm{CO}_{2}}{\mathrm{C}_{2} \mathrm{H}_{4}} \\ 1 \mathrm{LCC}_{2} \mathrm{H}_{4}\end{array}}{\mathrm{LCO}_{2}}=\mathrm{LCO}_{2}^{*}$

* at 294 K and 1.083 atm

Neither pressure nor temperature is constant; therefore, the combined gas law must be used to calculate the volume of CO_{2} at the final temperature and pressure.
\qquad Date \qquad Class \qquad

CHEMFILE MINI-GUIDE TO PROBLEM SOLVING

$$
\begin{gathered}
\frac{P_{I} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \\
\frac{\underset{\text { given }}{P_{2}} \times \underset{\text { given }}{T_{1}} \times{ }^{\text {given }}}{V_{I}}=V_{2}
\end{gathered}
$$

3. COMPUTE

$$
13.8 \mathrm{LC}_{2} \mathrm{H}_{4} * \times \frac{2 \mathrm{~L} \mathrm{CO}_{2}}{1 \mathrm{LC}_{2} \mathrm{H}_{4}}=27.6 \mathrm{~L} \mathrm{CO}_{2} *
$$

* at 294 K and 1.083 atm

Solve the combined-gas-law equation for V_{2}.

$$
V_{2}=\frac{317 \mathrm{~K} \times 1.083 \mathrm{attm} \times 27.6 \mathrm{~L} \mathrm{CO}_{2}}{0.989 \mathrm{~atm} \times 294 \mathrm{~K}}=32.6 \mathrm{~L} \mathrm{CO}_{2}
$$

4. EVALUATE

- Are the units correct? Yes; units canceled to give LCO_{2}.
- Is the number of significant Yes; the number of significant figfigures correct? ures is correct because the data had a minimum of three significant figures.
- Is the answer reasonable? Yes; the changes in both pressure and temperature increased the volume by small factors.

PRACTICE

1. A sample of ethanol burns in O_{2} to form CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ according to the following equation.

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}
$$

If the combustion uses 55.8 mL of oxygen measured at 2.26 atm and $40 .{ }^{\circ} \mathrm{C}$, what volume of CO_{2} is produced when measured at STP? ans: $73.3 \mathrm{~mL} \mathrm{CO}_{2}$
2. Dinitrogen pentoxide decomposes into nitrogen dioxide and oxygen. If 5.00 L of $\mathrm{N}_{2} \mathrm{O}_{5}$ reacts at STP, what volume of NO_{2} is produced when measured at $64.5^{\circ} \mathrm{C}$ and 1.76 atm ?
ans: 7.02 atm
\qquad Date \qquad Class \qquad

CHEMFILE MINI-GUIDE TO PROBLEM SOLVING

SAMPLE PROBLEM 3

When arsenic(III) sulfide is roasted in air, it reacts with oxygen to produce arsenic(III) oxide and sulfur dioxide according to the following equation.

$$
2 \mathrm{As}_{2} \mathrm{~S}_{3}(s)+9 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{As}_{2} \mathrm{O}_{3}(s)+6 \mathrm{SO}_{2}(g)
$$

When 89.5 g of $\mathrm{As}_{2} \mathrm{~S}_{3}$ is roasted with excess oxygen, what volume of SO_{2} is produced? The gaseous product is measured at $20^{\circ} \mathrm{C}$ and 98.0 kPa .

SOLUTION

1. $A N A L Y Z E$

- What is given in the problem?
the balanced equation, the mass of $\mathrm{As}_{2} \mathrm{~S}_{3}$, and the pressure and temperature conditions under which the SO_{2} is measured
- What are you asked to find? the volume of SO_{2} produced as measured at the given conditions

Items	Data	
Substance	$\mathrm{As}_{2} \mathrm{~S}_{3}(s)$	$\mathrm{SO}_{2}(g)$
Coefficient in balanced equation	2	6
Molar mass*	$246.05 \mathrm{~g} / \mathrm{mol}$	NA
Mass of substance	89.5 g	NA
Amount	$? \mathrm{~mol}$	$? \mathrm{~mol}$
Volume of substance	NA	$? \mathrm{~L}$
Temperature conditions	NA	$20^{\circ} \mathrm{C}=293 \mathrm{~K}$
Pressure conditions	NA	98.0 kPa

* determined from the periodic table

2. PLAN

- What steps are needed to calculate the volume of SO_{2} formed from the reaction of a given mass of $A s_{2} S_{3}$?

Use the molar mass of $\mathrm{As}_{2} \mathrm{~S}_{3}$ to determine the number of moles that react. Use the mole ratio from the balanced chemical equation to determine the amount in moles of SO_{2} formed. Use the ideal-gas-law equation to determine the volume of SO_{2} formed from the amount in moles.
\qquad Date \qquad Class \qquad

CHEMFILE MINI-GUIDE TO PROBLEM SOLVING

$$
\begin{aligned}
& \frac{1}{\text { molar mass } \mathrm{As}_{2} \mathrm{~S}_{3}} \quad \text { mole ratio, } \frac{\mathrm{SO}_{2}}{\mathrm{As}_{2} \mathrm{~S}_{3}} \\
& \mathrm{~g} \mathrm{As}_{2} \mathrm{~S}_{3} \times \frac{1 \mathrm{~mol} \mathrm{As}_{2} \mathrm{~S}_{3}}{246.05 \mathrm{~g} \mathrm{As}_{2} \mathrm{~S}_{3}} \times \frac{6 \mathrm{~mol} \mathrm{O}_{2}}{2 \mathrm{~mol} \mathrm{As}_{2} \mathrm{~S}_{3}}=\mathrm{mol} \mathrm{SO}{ }_{2}
\end{aligned}
$$

Rearrange the ideal-gas-law equation to solve for the unknown quantity, V.

$$
\begin{aligned}
& P V=n R T \\
& V=\frac{n R T}{P}
\end{aligned}
$$

3. COMPUTE

$\frac{1.09 \mathrm{~mol} \mathrm{SO}_{2} \times 8.314 \mathrm{~L} \cdot \mathrm{kPa} / \mathrm{mot} \cdot \mathrm{K} \times 293 \mathrm{~K}}{98.0 \mathrm{kPa}}=27.1 \mathrm{~L} \mathrm{SO}_{2}$
4. EVALUATE

- Are the units correct? Yes; units canceled to give liters of SO_{2}.
- Is the number of significant Yes; the number of significant figfigures correct? ures is correct because the data had a minimum of three significant figures.
\qquad Date \qquad Class \qquad

CHEMFILE MINI-GUIDE TO PROBLEM SOLVING

- Is the answer reasonable? Yes; computation of the amount of SO_{2} can be approximated as $(9 / 25) \times 3=27 / 25$, so you would expect an answer a little greater than 1 . At a temperature slightly above standard temperature, you would expect a volume a little greater than 22.4 L .

PRACTICE

1. Complete the table below using the following equation, which represents a reaction that produces aluminum chloride.

$$
2 \mathrm{Al}(s)+3 \mathrm{Cl}_{2}(g) \rightarrow 2 \mathrm{AlCl}_{3}(s)
$$

Mass AI	Volume Cl_{2}	Conditions	Mass AlCl_{3}	
a. excess	? L	STP	7.15 g	ans: $1.80 \mathrm{~L} \mathrm{Cl}_{2}$
b. 19.4 g	? L	STP	NA	ans: $24.2 \mathrm{~L} \mathrm{Cl}_{2}$
$\begin{aligned} & \hline \text { c. } 1.559 \\ & \mathrm{~kg} \end{aligned}$? L	$20 .{ }^{\circ} \mathrm{C}$ and 0.945 atm	NA	ans: $2.21 \times 10^{3} \mathrm{~L} \mathrm{Cl}_{2}$
d. excess	920. L	STP	$? \mathrm{~g}$	ans: $3.65 \times 10^{3} \mathrm{~g} \mathrm{AlCl}_{3}$
e. ? g	1.049 mL	$37^{\circ} \mathrm{C}$ and 5.00 atm	NA	ans: $3.71 \times 10^{-3} \mathrm{~g} \mathrm{Al}$
f. 500.00	? ${ }^{3}$	$\begin{aligned} & 15^{\circ} \mathrm{C} \text { and } \\ & 83.0 \mathrm{kPa} \end{aligned}$	NA	ans: $8.02 \times 10^{2} \mathrm{~m}^{3} \mathrm{Cl}_{2}$

ADDITIONAL PROBLEMS

1. The industrial production of ammonia proceeds according to the following equation.

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightarrow 2 \mathrm{NH}_{3}(g)
$$

a. What volume of nitrogen at STP is needed to react with 57.0 mL of hydrogen measured at STP?
b. What volume of NH_{3} at STP can be produced from the complete reaction of $6.39 \times 10^{4} \mathrm{~L}$ of hydrogen?
c. If 20.0 mol of nitrogen is available, what volume of NH_{3} at STP can be produced?
d. What volume of H_{2} at STP will be needed to produce 800. L of ammonia, measured at $55^{\circ} \mathrm{C}$ and 0.900 atm ?

Name Date \qquad Class \qquad

CHEMFILE MINI-GUIDE TO PROBLEM SOLVING

2. Propane burns according to the following equation.

$$
\mathrm{C}_{3} \mathrm{H}_{8}(g)+5 \mathrm{O}_{2}(g) \rightarrow 3 \mathrm{CO}_{2}(g)+4 \mathrm{H}_{2} \mathrm{O}(g)
$$

a. What volume of water vapor measured at $250 .{ }^{\circ} \mathrm{C}$ and 1.00 atm is produced when 3.0 L of propane at STP is burned?
b. What volume of oxygen at $20 .{ }^{\circ} \mathrm{C}$ and 102.6 kPa is used if 640 L of CO_{2} is produced? The CO_{2} is also measured at $20 .{ }^{\circ} \mathrm{C}$ and 102.6 kPa .
c. If 465 mL of oxygen at STP is used in the reaction, what volume of CO_{2}, measured at $37^{\circ} \mathrm{C}$ and 0.973 atm , is produced?
d. When $2.50 \mathrm{~L} \mathrm{of}^{\mathrm{C}_{3} \mathrm{H}_{8} \text { at STP burns, what total volume of }}$ gaseous products is formed? The volume of the products is measured at $175^{\circ} \mathrm{C}$ and 1.14 atm .
3. Carbon monoxide will burn in air to produce CO_{2} according to the following equation.

$$
2 \mathrm{CO}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)
$$

What volume of oxygen at STP will be needed to react with 3500 . L of CO measured at $20 .{ }^{\circ} \mathrm{C}$ and a pressure of 0.953 atm ?
4. Silicon tetrafluoride gas can be produced by the action of HF on silica according to the following equation.

$$
\mathrm{SiO}_{2}(s)+4 \mathrm{HF}(g) \rightarrow \mathrm{SiF}_{4}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)
$$

1.00 L of HF gas under pressure at 3.48 atm and a temperature of $25^{\circ} \mathrm{C}$ reacts completely with SiO_{2} to form SiF_{4}. What volume of SiF_{4}, measured at $15^{\circ} \mathrm{C}$ and 0.940 atm , is produced by this reaction?
5. One method used in the eighteenth century to generate hydrogen was to pass steam through red-hot steel tubes. The following reaction takes place.

$$
3 \mathrm{Fe}(s)+4 \mathrm{H}_{2} \mathrm{O}(g) \rightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}(s)+4 \mathrm{H}_{2}(g)
$$

a. What volume of hydrogen at STP can be produced by the reaction of 6.28 g of iron?
b. What mass of iron will react with 500 . L of steam at $250 .{ }^{\circ} \mathrm{C}$ and 1.00 atm pressure?
c. If 285 g of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ are formed, what volume of hydrogen, measured at $20 .{ }^{\circ} \mathrm{C}$ and 1.06 atm , is produced?
6. Sodium reacts vigorously with water to produce hydrogen and sodium hydroxide according to the following equation.

$$
2 \mathrm{Na}(s)+2 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow 2 \mathrm{NaOH}(a q)+\mathrm{H}_{2}(g)
$$

If 0.027 g of sodium reacts with excess water, what volume of hydrogen at STP is formed?

Name Date \qquad Class \qquad

CHEMFILE MINI-GUIDE TO PROBLEM SOLVING

7. Diethyl ether burns in air according to the following equation.

$$
\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}(l)+6 \mathrm{O}_{2}(g) \rightarrow 4 \mathrm{CO}_{2}(g)+5 \mathrm{H}_{2} \mathrm{O}(l)
$$

If 7.15 L of CO_{2} is produced at a temperature of $125^{\circ} \mathrm{C}$ and a pressure of 1.02 atm , what volume of oxygen, measured at STP, was consumed and what mass of diethyl ether was burned?
8. When nitroglycerin detonates, it produces large volumes of hot gases almost instantly according to the following equation.

$$
4 \mathrm{C}_{3} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{9}(l) \rightarrow 6 \mathrm{~N}_{2}(g)+12 \mathrm{CO}_{2}(g)+10 \mathrm{H}_{2} \mathrm{O}(g)+\mathrm{O}_{2}(g)
$$

a. When 0.100 mol of nitroglycerin explodes, what volume of each gas measured at STP is produced?
b. What total volume of gases is produced at $300 .{ }^{\circ} \mathrm{C}$ and 1.00 atm when 10.0 g of nitroglycerin explodes?
9. Dinitrogen monoxide can be prepared by heating ammonium nitrate, which decomposes according to the following equation.

$$
\mathrm{NH}_{4} \mathrm{NO}_{3}(s) \rightarrow \mathrm{N}_{2} \mathrm{O}(g)+2 \mathrm{H}_{2} \mathrm{O}(l)
$$

What mass of ammonium nitrate should be decomposed in order to produce 250 . mL of $\mathrm{N}_{2} \mathrm{O}$, measured at STP?
10. Phosphine, PH_{3}, is the phosphorus analogue to ammonia, NH_{3}. It can be produced by the reaction between calcium phosphide and water according to the following equation.

$$
\mathrm{Ca}_{3} \mathrm{P}_{2}(s)+6 \mathrm{H}_{2} \mathrm{O}(l) \rightarrow 3 \mathrm{Ca}(\mathrm{OH})_{2}(s \text { and } a q)+2 \mathrm{PH}_{3}(g)
$$

What volume of phosphine, measured at $18^{\circ} \mathrm{C}$ and 102.4 kPa , is produced by the reaction of 8.46 g of $\mathrm{Ca}_{3} \mathrm{P}_{2}$?
11. In one method of producing aluminum chloride, HCl gas is passed over aluminum and the following reaction takes place.

$$
2 \mathrm{Al}(s)+6 \mathrm{HCl}(g) \rightarrow 2 \mathrm{AlCl}_{3}(g)+3 \mathrm{H}_{2}(g)
$$

What mass of Al should be on hand in order to produce $6.0 \times$ $10^{3} \mathrm{~kg}$ of AlCl_{3} ? What volume of compressed HCl at 4.71 atm and a temperature of $43^{\circ} \mathrm{C}$ should be on hand at the same time?
12. Urea, $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$, is an important fertilizer that is manufactured by the following reaction.

$$
2 \mathrm{NH}_{3}(g)+\mathrm{CO}_{2}(g) \rightarrow\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}(s)+\mathrm{H}_{2} \mathrm{O}(g)
$$

What volume of NH_{3} at STP will be needed to produce $8.50 \times$ $10^{4} \mathrm{~kg}$ of urea if there is an 89.5% yield in the process?
13. An obsolete method of generating oxygen in the laboratory involves the decomposition of barium peroxide by the following equation.

$$
2 \mathrm{BaO}_{2}(s) \rightarrow 2 \mathrm{BaO}(s)+\mathrm{O}_{2}(g)
$$

What mass of BaO_{2} reacted if 265 mL of O_{2} is collected by water displacement at 0.975 atm and $10 .{ }^{\circ} \mathrm{C}$?

Name Date \qquad Class \qquad

CHEMFILE MINI-GUIDE TO PROBLEM SOLVING

14. It is possible to generate chlorine gas by dripping concentrated HCl solution onto solid potassium permanganate according to the following equation.

$$
\begin{aligned}
& 2 \mathrm{KMnO}_{4}(a q)+16 \mathrm{HCl}(a q) \rightarrow \\
& 2 \mathrm{KCl}(a q)
\end{aligned}+2 \mathrm{MnCl}_{2}(a q)+8 \mathrm{H}_{2} \mathrm{O}(l)+5 \mathrm{Cl}_{2}(g)
$$

If excess HCl is dripped onto 15.0 g of KMnO_{4}, what volume of Cl_{2} will be produced? $\mathrm{The} \mathrm{Cl}_{2}$ is measured at $15^{\circ} \mathrm{C}$ and 0.959 atm .
15. Ammonia can be oxidized in the presence of a platinum catalyst according to the following equation.

$$
4 \mathrm{NH}_{3}(g)+5 \mathrm{O}_{2}(g) \rightarrow 4 \mathrm{NO}(g)+6 \mathrm{H}_{2} \mathrm{O}(l)
$$

The NO that is produced reacts almost immediately with additional oxygen according to the following equation.

$$
2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}_{2}(g)
$$

If 35.0 kL of oxygen at STP react in the first reaction, what volume of NH_{3} at STP reacts with it? What volume of NO_{2} at STP will be formed in the second reaction, assuming there is excess oxygen that was not used up in the first reaction?
16. Oxygen can be generated in the laboratory by heating potassium chlorate. The reaction is represented by the following equation.

$$
2 \mathrm{KClO}_{3}(s) \rightarrow 2 \mathrm{KCl}(s)+3 \mathrm{O}_{2}(g)
$$

What mass of KClO_{3} must be used in order to generate 5.00 L of O_{2}, measured at STP?
17. One of the reactions in the Solvay process is used to make sodium hydrogen carbonate. It occurs when carbon dioxide and ammonia are passed through concentrated salt brine. The following equation represents the reaction.

$$
\underset{\mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}(l)+\mathrm{CO}_{2}(g)+\mathrm{NH}_{3}(g)}{\rightarrow} \underset{\mathrm{NaHCO}_{3}(s)+\mathrm{NH}_{4} \mathrm{Cl}(a q)}{ }
$$

a. What volume of NH_{3} at $25^{\circ} \mathrm{C}$ and 1.00 atm pressure will be required if $38000 \mathrm{~L}^{\circ}$ of CO_{2}, measured under the same conditions, react to form NaHCO_{3} ?
b. What mass of NaHCO_{3} can be formed when the gases in (a) react with NaCl ?
c. If this reaction forms 46.0 kg of NaHCO_{3}, what volume of NH_{3}, measured at STP, reacted?
d. What volume of CO_{2}, compressed in a tank at 5.50 atm and a temperature of $42^{\circ} \mathrm{C}$, will be needed to produce 100.00 kg of NaHCO_{3} ?
\qquad Date \qquad Class \qquad

CHEMFILE MINI-GUIDE TO PROBLEM SOLVING

18. The combustion of butane is represented in the following equation.

$$
2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+13 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

a. If 4.74 g of butane react with excess oxygen, what volume of CO_{2}, measured at $150 .{ }^{\circ} \mathrm{C}$ and 1.14 atm , will be formed?
b. What volume of oxygen, measured at 0.980 atm and $75^{\circ} \mathrm{C}$, will be consumed by the complete combustion of 0.500 g of butane?
c. A butane-fueled torch has a mass of 876.2 g . After burning for some time, the torch has a mass of 859.3 g . What volume of CO_{2}, at STP, was formed while the torch burned?
d. What mass of $\mathrm{H}_{2} \mathrm{O}$ is produced when butane burns and produces 3720 L of CO_{2}, measured at $35^{\circ} \mathrm{C}$ and 0.993 atm pressure?

