Mid-Term Topics

Honors

Observations

- Qualitative: descriptive observation that is not numerical.
- Example: This apple is red.
- Quantitative: Numerical observation.
- Example: The temperature of this room is $23^{\circ} \mathrm{C}$.

States of Matter

- Difference between solids, liquids, \& gases are the attractive forces amongst the particles and their energy.

Properties of Solids, Liquids, \& Gases

State	Shape	Volume	Compressibility	Microscopic Properties
Solid	Definite	Definite	Negligible	 tightly packed in rigid arrays.
Liquid	Indefinite	Definite	Very Little	Particles touching but mobile.
Gas	Indefinite	Indefinite	High	Particles far apart and independent of one another.

Energy and Phase Changes

- Endothermic : energy/heat is absorbed
- Exothermic : energy/heat is released

Pure Substances

- Elements and compounds are pure substances.
- Pure substances have a uniform and defined composition.
- Atoms of Helium always have 2 protons, 2 neutrons and 2 electrons.
- Sugar, glucose, always has 6 carbon atoms, 12 hydrogen atoms, and 6 oxygen atoms.
- Pure Substances also have distinct properties.
- Compounds are made up of two or more different kinds of elements that are linked together via chemical bonds.

Common Chemical Compounds
Water

Carbon Dioxide

Hydrogen Peroxide

Mixtures

- Two or more substances that are physically combined together.
- Two types of mixtures
- Homogeneous mixtures have a uniform composition throughout and have the same properties throughout.
- Heterogeneous mixtures do not have a uniform composition throughout and the properties are not the same throughout.

Adding Liquids Together

- Miscible- will mixwater and alcohol
- Immiscible- wont mix water and oil

Increase solubility of a gas in a liquid

- Henrys Law- solubility of the gas is directly proportional to the pressure above the liquid-
- Effervescence- rapid escape of gas from liquid
- Decrease temperatureslows down diffusion

Physical \& Chemical Changes

- Physical changes do not change to the composition of the substance.
- Typically involve phase changes.
- In any chemical change, one or more substances are used up while one or more new substances are formed. This means that the composition of the original substance has changed.
- Chemical reactions are chemical changes.

Indications of A Chemical Reaction

1) Bubbles- gas given off
2) Change in energy-
a. Becomes warm- exothermic
b. Becomes cool- endothermic
c. Light is given off
3) A precipitate (solid) forms
4) A change in color

More on Properties

- Intensive Properties are not dependent on the amount of matter present.
- Depend on what is Inside
- Density, boiling point, color
- Extensive Properties are dependent on the amount of matter present.
- Depend on how far they EXtend - Mass, volume, length

Binary Compounds

Binary compounds that contain a metal of fixed oxidation number (group 1, group 2, Al, Zn, Ag, etc.), and a non-metal.

To name these compounds, give the name of metal followed by the name of the non-metal, with the ending replaced by the suffix -ide.

Examples:

NaCl
sodium chloride
$\left(\mathrm{Na}^{1+} \mathrm{Cl}^{1-}\right)$
CaS
All_{3}
calcium sulficte
aluminum iodide
$\left(\mathrm{Al}^{3+} 3 \mathrm{I}^{1-}\right.$)

Criss-Cross Rule

Example: Aluminum Chloride

Step 1:
write out name with space
Step 2:
write symbols \& charge of elements
Step 3:
criss-cross charges as subsrcipts
Step 4:
combine as formula unit
(" 1 " is never shown)

Aluminum Chloride

Type Two

```
\(\mathrm{Pb}^{2+} / \mathrm{Pb}^{4+}\),
\(\mathrm{Sn}^{2+} / \mathrm{Sn}^{4+}\),
transition elements (not Ag or Zn )
```

A. To name, given the formula:

1. Figure out charge on cation.
2. Write name of cation.
3. Write Roman numerals in () to show cation's charge.

4. Write name of anion.

FeO	Fe^{2+}	O^{2-}
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	$2 \mathrm{Fe}^{9+}$	$3 \mathrm{O}^{2-}$
CuBr	$\mathrm{Cu}^{\mathrm{P+}}$	Br^{1-}
CuBr_{2}	Cu^{2+}	$2 \mathrm{Br}^{1-}$

iron (II) oxide
iron (III) oxide
copper (I) bromide
copper (II) bromide

Name this compound! $\mathrm{Cu}_{3} \mathrm{P}_{2}$

1. Find oxidation number of the metal :

$$
\begin{gathered}
(3)(x)+2(-3)=0 \\
X=+2
\end{gathered}
$$

2. state the metal
3. state the value of the Roman Numeral
4. state non-metal change ending to ide

Copper II Phosphide

Chromium (III) Chloride

RECALL: Chromium forms oxides in which metal exhibits oxidation states of +3 and +2 . STOCK system indicates oxidation state of compound. Assume Cr^{3+} (chromium (III) chloride).

Step 1: Chromium (III) Chloride

Step 2:

Step 3:

Step 4:
CrCl_{3}

Type Two Cont Monovalent metals w/Polyatomic lons

Parentheses are required only when you need more than one "bunch" of a particular polyatomic ion.

Ba^{2+}	and	$\mathrm{SO}_{4}{ }^{2-}$	BaSO_{4}	barium sulfate
Mg^{2+}	and	$\mathrm{NO}_{3}{ }^{1-}$	$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$	magnesium nitrate
$\mathrm{NH}_{4}{ }^{1+}$	and	$\mathrm{ClO}_{3}{ }^{1-}$	$\mathrm{NH}_{4} \mathrm{ClO}_{3}$	ammonium chlorate

Compounds Containing Polyatomic Ions

Insert name of ion where it should go in the compound's name. Cross and Drop Reduce if you can!

Write formulas:
iron (III) nitrate
Copper I phosphate
Silver chlorate
Nickel II phosphate
lead (II) permanganate
$\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$
$\mathrm{Cu}_{3} \mathrm{PO}_{4}$
AgClO_{3}
$\mathrm{Ni}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
$\mathrm{Pb}\left(\mathrm{MnO}_{4}\right)_{2}$

Precision and Accuracy

Accuracy refers to the agreement of a particular value with the true value.

Precision refers to the degree of agreement among several measurements made in the same manner.

Neither
accurate nor precise

Precise but not accurate

Precise AND accurate

Why Is there Uncertainty?

* Measurements are performed with
instruments
* No instrument can read to an infinite number of decimal places

Which of these balances has the greatest uncertainty in measurement?

- Identifying \& Counting Significant Figures:
- Use the Atlantic-Pacific Rule! If the decimal point is absent approach the number from the Atlantic side, go to your first non-zero number, and count all the way through. If the decimal point is present approach the number from the Pacific side go to your first nonzero number, and count all the way through.

Pacific Ocean

Atlantic Ocean

Sig Fig Practice \#1

How many significant figures in each of the following?
$\underline{1.0070} \mathrm{~m} \rightarrow 5$ sig figs
$\underline{17.10} \mathrm{~kg} \rightarrow 4$ sig figs
100,890 L $\rightarrow 5$ sig figs
$\underline{3.29} \times 10^{3} s \rightarrow 3$ sig figs
$0.0054 \mathrm{~cm} \rightarrow 2$ sig figs
3,200,000 $\rightarrow 2$ sig figs

Rules for Significant Figures in Mathematical Operations

Multiplication and Division: \# sig figs in the result equals the number in the least precise measurement used in the calculation.

$$
\begin{gathered}
6.38 \times \underline{2.0}= \\
12.76 \rightarrow 13(2 \text { sig figs })
\end{gathered}
$$

Addition and Subtraction: The number of decimal places in the result equals the number of decimal places in the least precise measurement.

$$
\begin{gathered}
6 . \underline{8}+11.934= \\
18.734 \rightarrow 18 . \underline{7}(3 \text { sig figs })
\end{gathered}
$$

How do you use the "ladder" method?
$1^{\text {st }}$ - Determine your starting point.
$2^{\text {nd }}-$ Count the "jumps" to your ending point.
$3^{\text {rd }}$ - Move the decimal the same number of jumps in the same direction.

How many jumps does it take?
4. $\dot{V}_{2} \dot{V}_{3} \dot{V}^{-}=4000 \mathrm{~m}$

Density- the amount of matter in a unit of volume-
can be used for identification purposes!

Using the density
triangle - any
variable equation can be found by covering the unknown-

What can you conclude about the density of rubber, glycerol, oil, paraffin and cork?

Table 4 Densities of Various Substances

Substance	Density $\left(\mathrm{g} / \mathbf{c m}^{\mathbf{3}}\right)$ at $\mathbf{2 5}{ }^{\circ} \mathbf{C}$
Hydrogen gas, $\mathrm{H}_{2}{ }^{*}$	0.0000824
Carbon dioxide gas, $\mathrm{CO}_{2}{ }^{*}$	0.00180
Ethanol (ethyl alcohol), $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	0.789
Water, $\mathrm{H}_{2} \mathrm{O}$	0.997
Sucrose (table sugar), $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$	1.587
Sodium chloride, NaCl	2.164
Aluminum, Al	2.699
Iron, Fe	7.86
Copper, Cu	8.94
Silver, Ag	10.5
Gold, Au	19.3
Osmium, Os	22.6

*at 1 atm

Density Calculations

- A sample of metal has a mass of 8.4 g . The volume of the sample is $3.1 \mathrm{~cm}^{3}$. What is the density?

$$
\text { Density }=\quad \frac{\text { Mass }}{\text { Volume }}=\frac{8.4 \mathrm{~g}}{3.1 \mathrm{~cm}^{3}}=2.7 \mathrm{~g} / \mathrm{cm}^{3}
$$

What is the volume of a sample of liquid Mercury that has a mass of 76.2 g . Given that the density of mercury is $13.6 \mathrm{~g} / \mathrm{mL}$?

Heat Capacity

- Amount of energy required to change a given sample by a given amount
- $\mathrm{Q}=\mathrm{mC} \Delta \mathrm{T}$
- $\mathrm{Q}=$ Heat= Joules
- $\mathrm{C}=$ specific heat (table value) $\mathrm{J} / \mathrm{g}^{0} \mathrm{C}$
(unique to material)
- $\Delta \mathrm{T}=\mathrm{T}_{\text {Final }}-\mathrm{T}_{\text {Initial }}$

Problems

- 1. a. How much energy is required to warm 5.00 grams of copper from 22.00c to 40.00c?
- b. How much energy is lost when 2.00 grams of lead is cooled from 25.00 c to 15.00 c?
- Find Mass
- 2. a. How many grams of water are in a sample if it required 166 joules of energy to be warmed from 20.00c to 40.00c?

LAW OF CONSERVATION OF MATTER

Mass is not created
(gained) nor
destroyed (lost) during ordinary physical and chemical reactions.

Proven by Antoine Lavoisier 200 years ago

LAW OF DEFINITE PROPORTIONS

Chemical compound contains the same elements in exactly the same proportions by mass regardless of sample size or source of substance

1700's Joseph Proust

We all know the chemical formula for water is $\mathrm{H}_{2} \mathrm{O}$. It is essential for the body. The water from a Poland
Spring bottle and from a your tap at home is always 2 hydrogen atoms to
1 oxygen atom

LAW OF MULTIPLE PROPORTIONS

Two elements may combine in different ratios to form different compounds.

Change the ratio ...Change the compound John Dalton

Water is composed of hydrogen and oxygen in a 2 to 1 ratio needed for body

Hydrogen Peroxide is $\mathrm{H}_{2} \mathrm{O}_{2}$ in a ratio of 2 to 2. Used as an antiseptic poisonous to body

DETERMINING ATOMIC STRUCTURE

Atomic Number is equal to the number of protons in the nucleus.

Abbreviated as Z

- It is like a social security number because it identifies the element.
- No two elements have the same atomic number.

Element	\# of protons	Atomic \# (Z)
Carbon	6	6
Phosphorus	15	15
Gold	79	79

MASS NUMBER

Mass number is the number of protons and neutrons in the nucleus of an isotope.

$$
\text { Mass \# }=\mathrm{p}^{+}+\mathrm{n}^{0}
$$

Nuclide	p^{+}	n^{0}	e^{-}	Mass \#
Oxygen-18	8	10	8	18
Arsenic-75	33	42	33	75
Phosphorus - 31	15	16	15	31

Mass \# is abbreviated as A

NUCLEAR SYMBOLS

Mass number

$$
\left(p^{+}+n^{0}\right)
$$

Element symbol

Atomic number
(number of p^{+})

VALENCE ELECTRONS

Valence electrons: an electron that is able to be lost gained or shared during bonding, due to it's location in the outer shell of the electron cloud.

Number of Valence electrons = group number

LEWIS DOT DIAGRAMS

Shows the kernel of the atom (all inner shells and nucleus) as the symbol and dots represent the outer electrons- Valence Electrons

TYPES OF RADIOACTIVE DECAY

$\%$ alpha production (α): helium nucleus

© beta production (β):

NUCLEAR FISSION AND FUSION

Fusion: Combining two light nuclei to form a heavier, more stable nucleus.

Fission: Splitting a heavy nucleus into two nuclei with smaller mass numbers.

FISSION

FUSION

$+$

$+$
$4{ }_{1}^{1} \mathrm{H}+2{ }_{-1}^{0} \mathrm{e} \longrightarrow{ }_{2}^{4} \mathrm{He}+\quad$ Energy

Four
hydrogen nuclei (protons)

HALF-LIFE

Amount of time it takes for one half of a sample of radioactive atoms to decay

HALF-LIFE
CALCULATION \#1
You have 400 mg of a radioisotope with a half-life of 5 minutes. How much will be left after 30 minutes?

Find the molar mass of each element in the compound. Multiply the element's atomic mass by the molar mass constant by the number of atoms of that element in the compound. Here's how you do it:

For hydrogen chloride, HCl , the molar mass of each element is 1.007 grams per mole for hydrogen and 35.453 grams per mole for chlorine.
For glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, the molar mass of each element is 12.0107 times 6 , or 72.0642 grams per mole for carbon; 1.007 times 12, or 12.084 grams per mole for hydrogen; and 15.9994 times 6, or 95.9964 grams per mole for oxygen.

MOLAR MASS

Add the molar masses of each element in the compound. This determines the molar mass for the compound. Here's how you do it:

For hydrogen chloride, the molar mass is $1.007+35.453$, or 36.460 grams per mole.

For glucose, the molar mass is $72.0642+12.084+95.9964$, or 180.1446 grams per mole.

CALCULATING
 PERCENT BY MASS

What is the percent by
$\left(\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}\right)$ mass of metal in the compound copper II phosphate? ($\left.\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}\right)$

P 2×30.97 +
Find total mass
O $8 \times 16.00=$
Find mass due to the Total mass= $\quad 380.59 \mathrm{amu}$ part
Divide mass of part by Mass of metal = 190.7 amu Divide mass of part by total

Multiply by 100
$\frac{190.7}{380.59}$ $x 100=50.1 \%$

WHAT ARE MOLES??

Chemistry counting unit
Used to count atoms or particles
One mole of any substances contains 6.022×10^{23} atoms or particles

- Particles is somewhat of a generic term that represents a minute piece of matter; like an atom, ion or molecule.

EXAMPLES

How many atoms of Carbon are in $\mathbf{2 . 2 5}$ moles of \mathbf{C} ?
$2.25 \mathrm{molC}\left(\frac{6.022 \times 10^{23} \text { atoms } \mathrm{C}}{1 \mathrm{molC}}\right)=1.35 \times 10^{24}$ atoms C
How many grams are in $\mathbf{3 . 4 5 6}$ moles of Calcium?
$3.456 \mathrm{~mol} \mathrm{Ca}\left(\frac{40.08 \mathrm{~g} \mathrm{Ca}}{1 \mathrm{~mol} \mathrm{Ca}}\right)=138.1648=138.2 \mathrm{~g} \mathrm{Ca}$
How many atoms are in 340 g of Magnesium?
$340 \mathrm{~g} \mathrm{Mg}\left(\frac{1 \mathrm{~mol} \mathrm{Mg}}{24.30 \mathrm{~g} \mathrm{Mg}}\right)\left(\frac{6.022 \times 10^{23} \text { atoms Mg }}{1 \mathrm{~mol} \mathrm{Mg}}\right)=8.4 \times 10^{24}$ atoms Mg

Determining the Formula of a Hydrate

\qquad Chem Worksheet 11-6

A hydrate is an ionic compound that contains water molecules in its structure. To determine the formula of a hydrate experimentally, we must calculate the mole: mole ratio of the water portion compared to the anhydrate portion. An anhydrate is the substance that remains after the water is removed from a hydrate. When a hydrate is heated the water molecules are driven off as steam, leaving behind the water-free anhydrate.

The first step to finding the formula for a hydrate is to record the mass of the hydrate. After heating the hydrate, the mass is determined for the anhydrate that remains. The mass of the water that was present is calculated by finding the difference between the mass of the hydrate and the mass of the anhydrate. The mass of the water and the mass of the anhydrate are each converted to moles using their respective molar masses. From this a whole number ratio can be determined (see example).

Data Table

Mass of hydrate $\left(\mathrm{CaCl}_{2} \cdot \mathrm{XH}_{2} \mathrm{O}\right)$	
Mass of anhydrate $\left(\mathrm{CaCl}_{2}\right)$	4.72 g
Mass of water	3.56 g

Example

A calcium chloride hydrate has a mass of 4.72 g . After heating for several minutes the mass of the anhydrate is found to be 3.56 g . Use this information to determine the formula for the hydrate.

- find the mass of the water driven off:
- convert the mass of anhydrate to moles:
- convert the mass of water to moles:
- find the mole $\mathrm{H}_{2} \mathrm{O}$ to mole CaCl_{2} ratio:

$$
\begin{aligned}
& \text { mass of hydrate }- \text { mass of anhydrate }=\text { mass of water } \\
& 4.72 \mathrm{~g}-3.56 \mathrm{~g}=1.18 \mathrm{~g}
\end{aligned}
$$

$$
\frac{3.56 \mathrm{gCaCl}_{2}}{1} \times \frac{1 \mathrm{~mol} \mathrm{CaCl}_{2}}{110.98 \mathrm{sCaCl}_{2}}=0.0321 \mathrm{~mol} \mathrm{CaCl}_{2}
$$

$$
\frac{1.18 \mathrm{gH}_{2} \mathrm{O}}{1} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.02 \mathrm{gH}_{2} \mathrm{O}}=0.0655 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

$$
0.0655 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}=2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
$$

Finding an Empirical Formula from Experimental Data

1. Find \# of g of each element.
2. Convert each g to mol.
3. Divide each "\# of mol" by the smallest "\# of mol." 4. Use whole number ratio to find formula.

A compound is 45.5% yttrium and 54.5% chlorine. Find its empirical formula.
$45.5 \mathrm{gY}\left(\frac{1 \mathrm{~mol} \mathrm{Y}}{88.9 \mathrm{gY}}\right)=0.512 \mathrm{~mol} \mathrm{Y} \div 0.512 \rightarrow 1$
$54.5 \mathrm{gCl}\left(\frac{1 \mathrm{~mol} \mathrm{Cl}}{35.5 \mathrm{gCl}}\right)=1.535 \mathrm{~mol} \mathrm{Cl} \div 0.512 \rightarrow 3$

A ruthenium/sulfur compound is $67.7 \% \mathrm{Ru}$.
Find its empirical formula.
$67.7 \mathrm{gR} R \mathrm{u}\left(\frac{1 \mathrm{molRu}}{101.1 \mathrm{gRu}}\right)=0.670 \mathrm{molRu} \div 0.670 \rightarrow 1$
$32.3 \mathrm{gS}\left(\frac{1 \mathrm{mols}}{32.1 \mathrm{gS}}\right)=1.006 \mathrm{molS} \div 0.670 \rightarrow 1.5$
Multiply each by 2 to get to next
$\mathrm{Ru}_{2} \mathrm{~S}_{3}$ whole number

To find molecular formula...

A. Find empirical formula.
B. Find molar mass of empirical formula.
C. Find $\mathrm{n}=\underline{\mathrm{mm} \text { molecular }}$ mm empirical
D. Multiply all parts of empirical formula by n.
(How many empiricals "fit into" the molecular?)

A carbon/hydrogen compound is $7.7 \% \mathrm{H}$ and has a molar mass of 78 g . Find its molecular formula.

$$
\begin{gathered}
7.7 \mathrm{gH}\left(\frac{1 \mathrm{molH}}{1.0 \mathrm{gH}}\right)=7.7 \mathrm{~mol} \mathrm{H} \div 7.69 \rightarrow 1 \\
92.3 \mathrm{gC}\left(\frac{1 \mathrm{~mol} \mathrm{C}}{12.0 \mathrm{gC}}\right)=7.69 \mathrm{~mol} \mathrm{C} \div 7.69 \rightarrow 1
\end{gathered}
$$

emp. form. $\rightarrow \underline{\mathrm{CH}}$

$$
\mathrm{mm}_{\mathrm{emp}}=13 \mathrm{~g} \longrightarrow \frac{78 \mathrm{~g}}{13 \mathrm{~g}}=6 \longrightarrow \mathrm{C}_{6} \mathrm{H}_{6}
$$

HOW DO ELECTRONS FILL IN AN ATOM? THE DIAGONAL RULE

HOW TO FILL

1 Find total \# of electrons
2 Write subshells in order of diagonal rule
3. Fill in subshells till all electrons are used
4. Last subshell may be partially filled.

Sublevel	\# of electrons can hold
S	2
P	6
D	10
F	14

STANDARD

NOTATION

 OF FLUORINENumber of electrons in the sub level $2,2,5$

$1 s^{2} 2 s^{2} 2 p^{5}$

Sublevels

STEPS FOR NOBLE GAS CONFIGURATION

1 Find element on periodic table.
2 Find number of electrons
3 Find Group 8 element from period above target element
4 Write group 8 element symbol in [brackets]
5 Subtract noble gases electrons from initial elements
6 Start filling from S subshell of initial elements period \# til all electrons are placed

Orbital Notation or Diagrams

Simply use horizontal lines and arrows instead of exponents to represent the electrons
1 arrow = 1electron
Each line holds 2 electrons
\# of lines for S P D F must be able to hold same number of electrons as in longhand electron configuration $S=2 e^{-}$so 1 line $P=6 e^{-}$so 3 lines $d=10 e^{-}$so 5 lines $f=14 e^{-}$so 7 lines

Rules for electron filling:

- Aufbaus Rule- must fill the lowest energy level available first!
- Hunds Rule - 1 electron in each orbital of a sublevel before pairing begins
Must fill all seats on the bus before doubling up!
- Pauli Exclusion Principle-2 electrons occupying the same orbital must have opposite spins- 1 up 1 down

Things you must accept to do orbital Diagrams (energy diagrams)

- Energy builds further away from the nucleus
- Each line represents an orbital
- Each orbital can hold only two electrons
- We as a group will decide to place positive spin arrows in first this is arbitrary NOT A RULE Just so all our QNS are the same
- Each electron is represented by an arrow
- In an orbital the two electrons must point in different directions
- Remember from the diagonal rule $4 s$ fills before 3d breaking Aufbau's Rule

Element	Configuration notation	Orbital notation	Noble gas notation
Lithium	$\mathbf{1 s} \mathbf{2}^{\mathbf{2}}{ }^{\mathbf{1}}$	$\frac{1}{15} \frac{1}{2 s} \quad-\quad \frac{}{2 p}$	[He]2s ${ }^{1}$
Beryllium	1s ${ }^{\mathbf{2}} \mathbf{s}^{\mathbf{2}}$		[He]2s ${ }^{2}$
Boron	1s $\mathbf{2}^{\mathbf{2}} \mathrm{s}^{\mathbf{2}} \mathrm{p}^{\mathbf{1}}$		[He]2s ${ }^{2} \mathbf{p}^{1}$
Carbon	$\mathbf{1 s} \mathbf{2}^{\mathbf{2}} \mathrm{s}^{\mathbf{2}} \mathrm{p}^{\mathbf{2}}$		$[\mathrm{He}] 2 \mathrm{~s}^{2} \mathrm{p}^{2}$
Nitrogen	$\mathbf{1 s} \mathbf{2}^{\mathbf{2}} \mathrm{s}^{\mathbf{2}} \mathrm{p}^{\mathbf{3}}$	$\frac{\uparrow \downarrow}{1 \mathrm{~s}} \frac{\uparrow \downarrow}{2 \mathrm{~s}}+\frac{\uparrow}{2 p}+\frac{\uparrow}{4}$	$[\mathrm{He}] 2 \mathrm{~s}^{2} \mathrm{p}^{3}$
Oxygen	$1 s^{2} 2 s^{2} p^{4}$	$\frac{\uparrow \downarrow}{1 s} \frac{\uparrow \downarrow}{2 s} \quad \uparrow \downarrow \quad \frac{1}{2 p} \quad \uparrow$	[He]2s ${ }^{2} \mathbf{p}^{4}$
Fluorine	$1 s^{2} 2 s^{2} p^{5}$		[He]2s ${ }^{2} p^{5}$
Neon	$1 s^{2} 2 s^{2} p^{6}$		[He]2s ${ }^{2} p^{6}$

