Mid-Term Topics

Observations

- Qualitative: descriptive observation that is not numerical.
- Example: This apple is red.
- Quantitative: Numerical observation.
- Example: The temperature of this room is $23^{\circ} \mathrm{C}$.

Laws, Hypotheses, \& Theories

- Scientific Laws summarize facts, but do not make any attempt to explain the facts.
- Example: Law of Conservation of Mass states that matter can neither be created nor destroyed.
- A Hypothesis is a tentative, reasonable explanation of the facts or the laws.
- Scientific Theory is a hypothesis that has withstood extensive testing and is known to be true.

States of Matter

- Difference between solids, liquids, \& gases are the attractive forces amongst the particles and their energy.

Properties of Solids, Liquids, \& Gases

State	Shape	Volume	Compressibility	Microscopic Properties
Solid	Definite	Definite	Negligible	 tightly packed in rigid arrays.
Liquid	Indefinite	Definite	Very Little	Particles touching but mobile.
Gas	Indefinite	Indefinite	High	Particles far apart and independent of one another.

Energy and Phase Changes

- Endothermic : energy/heat is absorbed
- Exothermic : energy/heat is released

Pure Substances

- Elements and compounds are pure substances.
- Pure substances have a uniform and defined composition.
- Atoms of Helium always have 2 protons, 2 neutrons and 2 electrons.
- Sugar, glucose, always has 6 carbon atoms, 12 hydrogen atoms, and 6 oxygen atoms.
- Pure Substances also have distinct properties.
- Compounds are made up of two or more different kinds of elements that are linked together via chemical bonds.

Common Chemical Compounds
Water

Carbon Dioxide

Hydrogen Peroxide

Mixtures

- Two or more substances that are physically combined together.
- Two types of mixtures
- Homogeneous mixtures have a uniform composition throughout and have the same properties throughout.
- Heterogeneous mixtures do not have a uniform composition throughout and the properties are not the same throughout.

Physical \& Chemical Changes

- Physical changes do not change to the composition of the substance.
- Typically involve phase changes.
- In any chemical change, one or more substances are used up while one or more new substances are formed. This means that the composition of the original substance has changed.
- Chemical reactions are chemical changes.

More on Properties

- Intensive Properties are not dependent on the amount of matter present.
- Depend on what is Inside
- Density, boiling point, color
- Extensive Properties are dependent on the amount of matter present.
- Depend on how far they EXtend - Mass, volume, length

Precision and Accuracy

- Accuracy refers to the agreement of a particular value with the true value.
- Precision refers to the degree of agreement among several

Neither
accurate nor precise
ien

Precise but not accurate

Precise AND accurate

Why Is there Uncertainty?

* Measurements are performed with
instruments
* No instrument can read to an infinite number of decimal places

Which of these balances has the greatest uncertainty in measurement?

- Identifying \& Counting Significant Figures:
- Use the Atlantic-Pacific Rule! If the decimal point is absent approach the number from the Atlantic side, go to your first non-zero number, and count all the way through. If the decimal point is present approach the number from the Pacific side go to your first nonzero number, and count all the way through.

Pacific Ocean

Atlantic Ocean

Sig Fig Practice \#1

How many significant figures in each of the following?
$\underline{1.0070} \mathrm{~m} \rightarrow 5$ sig figs
$\underline{17.10} \mathrm{~kg} \rightarrow 4$ sig figs
100,890 L $\rightarrow 5$ sig figs
$\underline{3.29} \times 10^{3} s \rightarrow 3$ sig figs
$0.0054 \mathrm{~cm} \rightarrow 2$ sig figs
3,200,000 $\rightarrow 2$ sig figs

Rules for Significant Figures in Mathematical Operations

Multiplication and Division: \# sig figs in the result equals the number in the least precise measurement used in the calculation.

$$
\begin{gathered}
6.38 \times \underline{2.0}= \\
12.76 \rightarrow 13(2 \text { sig figs })
\end{gathered}
$$

Addition and Subtraction: The number of decimal places in the result equals the number of decimal places in the least precise measurement.

$$
\begin{gathered}
6 . \underline{8}+11.934= \\
18.734 \rightarrow 18 . \underline{7}(3 \text { sig figs })
\end{gathered}
$$

How do you use the "ladder" method?
$1^{\text {st }}$ - Determine your starting point.
$2^{\text {nd }}-$ Count the "jumps" to your ending point.
$3^{\text {rd }}$ - Move the decimal the same number of jumps in the same direction.

How many jumps does it take?
4. $\dot{V}_{2} \dot{V}_{3} \dot{V}^{-}=4000 \mathrm{~m}$

Density- the amount of matter in a unit of volume-
can be used for identification purposes!

Using the density
triangle - any
variable equation can be found by covering the unknown-

Density Calculations

A sample of metal has a mass of 8.4 g . The volume of the sample is $3.1 \mathrm{~cm}^{3}$. What is the density?
Density $=\frac{\text { Mass }}{\text { Volume }}=\frac{8.4 \mathrm{~g}}{3.1 \mathrm{~cm}^{3}}=2.7 \mathrm{~g} / \mathrm{cm}^{3}$
What is the volume of a sample of liquid Mercury that has a mass of 76.2 g . Given that the density of mercury is $13.6 \mathrm{~g} / \mathrm{mL}$?
Volume $=\frac{\text { Mass }}{\text { Density }}=\frac{76.2 \mathrm{~g}}{13.6 \mathrm{~g} / \mathrm{mL}}=5.60 \mathrm{~mL}$

LAW OF CONSERVATION OF MATTER

Mass is not created
(gained) nor
destroyed (lost) during ordinary physical and chemical reactions.

Proven by Antoine Lavoisier 200 years ago

LAW OF DEFINITE PROPORTIONS

Chemical compound contains the same elements in exactly the same proportions by mass regardless of sample size or source of substance

1700's Joseph Proust

We all know the chemical formula for water is $\mathrm{H}_{2} \mathrm{O}$. It is essential for the body. The water from a Poland
Spring bottle and from a your tap at home is always 2 hydrogen atoms to
1 oxygen atom

LAW OF MULTIPLE PROPORTIONS

Two elements may combine in different ratios to form different compounds.

Change the ratio ...Change the compound John Dalton

Water is composed of hydrogen and oxygen in a 2 to 1 ratio needed for body

Hydrogen Peroxide is $\mathrm{H}_{2} \mathrm{O}_{2}$ in a ratio of 2 to 2. Used as an antiseptic poisonous to body

DETERMINING ATOMIC STRUCTURE

Atomic Number is equal to the number of protons in the nucleus.

Abbreviated as Z

- It is like a social security number because it identifies the element.
- No two elements have the same atomic number.

Element	\# of protons	Atomic \# (Z)
Carbon	6	6
Phosphorus	15	15
Gold	79	79

MASS NUMBER

Mass number is the number of protons and neutrons in the nucleus of an isotope.

$$
\text { Mass \# }=\mathrm{p}^{+}+\mathrm{n}^{0}
$$

Nuclide	p^{+}	n^{0}	e^{-}	Mass \#
Oxygen-18	8	10	8	18
Arsenic-75	33	42	33	75
Phosphorus - 31	15	16	15	31

Mass \# is abbreviated as A

NUCLEAR SYMBOLS

Mass number

$$
\left(p^{+}+n^{0}\right)
$$

Element symbol

Atomic number
(number of p^{+})

VALENCE ELECTRONS

Valence electrons: an electron that is able to be lost gained or shared during bonding, due to it's location in the outer shell of the electron cloud.

Number of Valence electrons = group number

VALENCE ELECTRONS- OUTERMOST ELECTRONS - RESPONSIBLE FOR REACTIVITY OF THE ATOM

Note: all the elements in the same group have the same number of valence electrons!

Therefore they are physically and chemically similar!

LEWIS DOT DIAGRAMS

Shows the kernel of the atom (all inner shells and nucleus) as the symbol and dots represent the outer electrons- Valence Electrons

Find the molar mass of each element in the compound. Multiply the element's atomic mass by the molar mass constant by the number of atoms of that element in the compound. Here's how you do it:

For hydrogen chloride, HCl , the molar mass of each element is 1.007 grams per mole for hydrogen and 35.453 grams per mole for chlorine.
For glucose, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$, the molar mass of each element is 12.0107 times 6 , or 72.0642 grams per mole for carbon; 1.007 times 12, or 12.084 grams per mole for hydrogen; and 15.9994 times 6, or 95.9964 grams per mole for oxygen.

MOLAR MASS

Add the molar masses of each element in the compound. This determines the molar mass for the compound. Here's how you do it:

For hydrogen chloride, the molar mass is $1.007+35.453$, or 36.460 grams per mole.

For glucose, the molar mass is $72.0642+12.084+95.9964$, or 180.1446 grams per mole.

CALCULATING
 PERCENT BY MASS

What is the percent by
$\left(\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}\right)$ mass of metal in the compound copper II phosphate? ($\left.\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}\right)$

P 2×30.97 +
Find total mass
O $8 \times 16.00=$
Find mass due to the Total mass= $\quad 380.59 \mathrm{amu}$ part
Divide mass of part by Mass of metal = 190.7 amu Divide mass of part by total

Multiply by 100
$\frac{190.7}{380.59}$ $x 100=50.1 \%$

WHAT ARE MOLES??

Chemistry counting unit
Used to count atoms or particles
One mole of any substances contains 6.022×10^{23} atoms or particles

- Particles is somewhat of a generic term that represents a minute piece of matter; like an atom, ion or molecule.

EXAMPLES

How many atoms of Carbon are in $\mathbf{2 . 2 5}$ moles of \mathbf{C} ?
$2.25 \mathrm{molC}\left(\frac{6.022 \times 10^{23} \text { atoms } \mathrm{C}}{1 \mathrm{molC}}\right)=1.35 \times 10^{24}$ atoms C
How many grams are in $\mathbf{3 . 4 5 6}$ moles of Calcium?
$3.456 \mathrm{~mol} \mathrm{Ca}\left(\frac{40.08 \mathrm{~g} \mathrm{Ca}}{1 \mathrm{~mol} \mathrm{Ca}}\right)=138.1648=138.2 \mathrm{~g} \mathrm{Ca}$
How many atoms are in 340 g of Magnesium?
$340 \mathrm{~g} \mathrm{Mg}\left(\frac{1 \mathrm{~mol} \mathrm{Mg}}{24.30 \mathrm{~g} \mathrm{Mg}}\right)\left(\frac{6.022 \times 10^{23} \text { atoms Mg }}{1 \mathrm{~mol} \mathrm{Mg}}\right)=8.4 \times 10^{24}$ atoms Mg

BINARY COMPOUNDS

Binary compounds that contain a metal of fixed oxidation number (group 1, group 2, Al, Zn, Ag, etc.), and a non-metal.

To name these compounds, give the name of metal followed by the name of the non-metal, with the ending replaced by the suffix -ide.

Examples:

NaCl
sodium chloride
$\left(\mathrm{Na}^{1+} \mathrm{Cl}^{1-}\right)$
CaS
All_{3}
calcium sulficte
aluminum iodide
$\left(\mathrm{Al}^{3+} 3 \mathrm{I}^{1-}\right.$)

Criss-Cross Rule

EXAMPLE: ALUMINUM CHLORIDE

Step 1:
write out name with space
Step 2:
write symbols \& charge of elements
Step 3:
criss-cross charges as subsrcipts
Step 4:
combine as formula unit
(" 1 " is never shown)

Aluminum Chloride

Type Two

```
\(\mathrm{Pb}^{2+} / \mathrm{Pb}^{4+}\),
\(\mathrm{Sn}^{2+} / \mathrm{Sn}^{4+}\),
transition elements (not Ag or Zn )
```

A. To name, given the formula:

1. Figure out charge on cation.
2. Write name of cation.
3. Write Roman numerals in () to show cation's charge.

Stock System
 of nomenclature

4. Write name of anion.

FeO	Fe^{2+}	O^{2-}
$\mathrm{Fe}_{2} \mathrm{O}_{3}$	$2 \mathrm{Fe}^{3+}$	$3 \mathrm{O}^{2-}$
CuBr	$\mathrm{Cu}^{\mathrm{P+}}$	Br^{1-}
CuBr_{2}	Cu^{2+}	$2 \mathrm{Br}^{1-}$

iron (II) oxide
iron (III) oxide
copper (I) bromide
copper (II) bromide

NAME THIS COMPOUND! $\mathrm{CU}_{3} \mathrm{P}_{2}$

1. Find oxidation number of the metal :

$$
\begin{gathered}
(3)(\mathrm{x})+2(-3)=0 \\
\mathrm{X}=+2
\end{gathered}
$$

2. state the metal
3. state the value of the Roman Numeral
4. state non-metal change ending to ide

Copper II Phosphide

CHROMIUM (III) CHLORIDE

RECALL: Chromium forms oxides in which metal exhibits oxidation states of +3 and +2 . STOCK system indicates oxidation state of compound. Assume Cr^{3+} (chromium (III) chloride).

Step 1: Chromium (III) Chloride

Step 2:
Step 3:

Step 4:
CrCl_{3}

TYPE TWO CONT MONOVALENT METALS w/POLYATOMIC IONS

Parentheses are required only when you need more than one "bunch" of a particular polyatomic ion.

Ba^{2+}	and	SO_{4}^{2-}	BaSO_{4}	barium sulfate
Mg^{2+}	and	$\mathrm{NO}_{3}{ }^{1-}$	$\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$	magnesium nitrate
NH_{4}^{1+}	and	$\mathrm{ClO}_{3}{ }^{1-}$	$\mathrm{NH}_{4} \mathrm{ClO}_{3}$	ammonium chlorate

COMPOUNDS CONTAINING POLYATOMIC IONS

Insert name of ion where it should go in the compound's name.
Cross and Drop Reduce if you can!

Write formulas:
iron (III) nitrate
Copper I phosphate
Silver chlorate
Nickel II phosphate
lead (II) permanganate

Fe^{3+}	$3 \mathrm{NO}_{3}{ }^{1-}$
$3 \mathrm{Cu}^{1+}$	$\mathrm{PO}_{4} 3^{-}$
Ag^{1+}	$\mathrm{ClO}_{3}{ }^{1-}$
$3 \mathrm{Ni}^{2+}$	$2 \mathrm{PO}_{4}{ }^{3-}$
Pb^{2+}	$2 \mathrm{MnO}_{4}{ }^{1-}$

$\mathrm{Cu}_{3} \mathrm{PO}_{4}$
AgClO_{3}
$\mathrm{Ni}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
$\mathrm{Pb}\left(\mathrm{MnO}_{4}\right)_{2}$

