

Courtesy www.lab-initio.com

Calculating Percent by Mass

- What is the percent by mass of metal in the compound copper II phosphate? (Cu₃(PO₄)₂)
- Find total mass
- Find mass due to the part
- Divide mass of part by total
- Multiply by 100

(Cu₃(PO₄)₂)

subscript		from P.T.	
Cu	3 [*] x	63.55	+
Ρ	2 X	30.97	+
0	8 x	16.00	=

Total mass= 380.59 amu Mass of metal = 190.7 amu <u>190.7</u> x 100 = 50.1% 380.59

Calculating Percentage Composition

Calculate the percentage composition of magnesium carbonate, MgCO₃.

<u>Formula mass of magnesium carbonate:</u> 24.31 g + 12.01 g + 3(16.00 g) = 84.32 g

$$Mg = \left(\frac{24.31}{84.32}\right) \bullet 100 = 28.83\%$$
$$C = \left(\frac{12.01}{84.32}\right) \bullet 100 = 14.24\%$$
$$O = \left(\frac{48.00}{84.32}\right) \bullet 100 = 56.93\%$$
100.00

Formulas

Empirical formula: the lowest whole number ratio of atoms in a compound. Molecular formula: the true number of atoms of each element in the formula of a compound.

 \Box molecular formula = (empirical formula),

- \Box molecular formula = C_6H_6 = (CH)₆
- empirical formula = CH

Formulas for ionic compounds are <u>ALWAYS</u> empirical (lowest whole number ratio).

Examples: NaCl $Al_2(SO_4)_3$ MgCl₂ K_2CO_3

Formulas for molecular compounds <u>MIGHT</u> be empirical (lowest whole number ratio).

Molecular:
 H_2O $C_6H_{12}O_6$ $C_{12}H_{22}O_{11}$

Image: Image of the system
Image of the system
Image of the system

Image: Image of the system
Image of the system
Image of the system

Image: Image of the system
Image of the system
Image of the system

Image: Image of the system
Image of the system
Image of the system

Image: Image of the system
Image of the system
Image of the system

Image: Image of the system
Image of the system
Image of the system

Image: Image of the system
Image of the system
Image of the system

Image: Image of the system
Image of the system
Image of the system

Image: Image of the system
Image of the system
Image of the system

Image: Image of the system
Image of the system
Image of the system

Image: Image of the system
Image of the system
Image of the system

Image: Image of the system
Image of the system
Image of the system

Image: Image of the system
Image of the system
Image of the system

Image: Image of the system
Image of the system
Image of the system

Image: Image of the system
Image

How to calculate an empirical formula

- How to calculate:
 - STEP 1: You will be given either masses or percent composition.
 - STEP 2: If you are given % composition, turn it into grams by assuming a 100.0 g sample. NOTE: If you are given mass, you do not need to do this step.
 - STEP 3: Convert the masses to the number of moles of each element.

- STEP 4: Figure out the proportion of moles of each element in the compound by dividing each by the smallest number of moles.
- STEP 5: If step 4 resulted in whole numbers, you are done! However, if there were decimals, you will need to multiply by small, whole numbers until you have whole numbers.

A way to remember those steps:

- A Poem by Joel Thompson:
- Percent to mass
- Mass to mole
- Divide by small
- · Multiply 'til whole

Empirical Formula Determination

Adipic acid contains 49.32% C, 43.84% O, and 6.85% H by mass. What is the empirical formula of adipic acid?

1.Treat % as mass, and convert grams to moles

 $\frac{49.32 \text{ g carbon}}{12.01 \text{ g carbon}} = 4.107 \text{ mol carbon}$ $\frac{6.85 \text{ g hydrogen}}{1.01 \text{ g hydrogen}} = 6.78 \text{ mol hydrogen}$ $\frac{43.84 \text{ g oxygen}}{16.00 \text{ g oxygen}} = 2.74 \text{ mol oxygen}$

Empirical Formula Determination 2. Divide each value of moles by the smallest of the values.

Carbon: $\frac{4.107 \, mol \, carbon}{2.74 \, mol} = 1.50$

Hydrogen: $\frac{6.78 \, mol \, hydrogen}{2.74 \, mol} = 2.47$

 $\frac{2.74 \,mol \,oxygen}{2.74 \,mol} = 1.0$

Empirical Formula Determination 3. Multiply each number by an integer to obtain all whole numbers. **Carbon: 1.50** Hydrogen: 2.50 Oxygen: 1.00 x 2 3 x 2 2 <u>x 2</u> 5

Empirical formula: C₃H₅O₂

Finding the Molecular Formula

The empirical formula for adipic acid is $C_3H_5O_2$. The molecular mass of adipic acid is 146 g/mol. What is the molecular formula of adipic acid?

1. Find the formula mass of $C_3H_5O_2$ 3(12.01 g) + 5(1.01) + 2(16.00) = 73.08 g

Finding the Molecular Formula

The empirical formula for adipic acid is $C_3H_5O_2$. The molecular mass of adipic acid is 146 g/mol. What is the molecular formula of adipic acid?

3(12.01 g) + 5(1.01) + 2(16.00) = 73.08 g

2. Divide the molecular mass by the mass given by the emipirical formula.

 $\frac{146}{73} = 2$

Finding the Molecular Formula The empirical formula for adipic acid is $C_3H_5O_2$. The molecular mass of adipic acid is 146 g/mol. What is the molecular formula of adipic acid?

$$\frac{146}{73} = 2 \quad (C_3H_5O_2) \times 2 = C_6H_{10}O_4$$

3. Multiply the empirical formula by this number to get the molecular formula.