Percent Composition. Empirical and

Molecular Formulas

Courtesy www.lab-initio.com

Calculating Percent by Mass

- What is the percent by mass of metal in the compound copper II phosphate? ($\left.\mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{2}\right)$
- Find total mass
- Find mass due to the part
- Divide mass of part by total
- Multiply by 100

Calculating Percentage Composition

Calculate the percentage composition of magnesium carbonate, MgCO_{3}.

Formula mass of magnesium carbonate: $24.31 \mathrm{~g}+12.01 \mathrm{~g}+3(16.00 \mathrm{~g})=84.32 \mathrm{~g}$

$$
\begin{aligned}
M g & =\left(\frac{24.31}{84.32}\right) \cdot 100=28.83 \% \\
C & =\left(\frac{12.01}{84.32}\right) \cdot 100=14.24 \% \\
O & =\left(\frac{48.00}{84.32}\right) \cdot 100=\frac{56.93 \%}{100.00}
\end{aligned}
$$

Formulas

Empirical formula: the lowest whole number ratio of atoms in a compound. Molecular formula: the true number of atoms of each element in the formula of a compound.

I molecular formula $=$ (empirical formula) ${ }_{n}$
\square molecular formula $=\mathrm{C}_{6} \mathrm{H}_{6}=(\mathrm{CH})_{6}$
\square empirical formula $=\mathrm{CH}$

Formulas (continued)

Formulas for ionic compounds are ALWAYS empirical (lowest whole number ratio).

Examples:

$$
\begin{array}{ll}
\mathrm{NaCl} & \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3} \\
\mathrm{MgCl}_{2} & \mathrm{~K}_{2} \mathrm{CO}_{3}
\end{array}
$$

Formulas (continued)

Formulas for molecular compounds MIGHT be empirical (lowest whole number ratio).

Molecular: $\mathrm{H}_{2} \mathrm{O}$

Empirical: $\mathrm{H}_{2} \mathrm{O}$
$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$ \downarrow
$\mathrm{CH}_{2} \mathrm{O}$
$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$

How to calculate an empirical formula

- How to calculate:
- STEP 1: You will be given either masses or percent composition.
- STEP 2: If you are given \% composition, turn it into grams by assuming a 100.0 g sample. NOTE: If you are given mass, you do not need to do this step.
- STEP 3: Convert the masses to the number of moles of each element.
- STEP 4: Figure out the proportion of moles of each element in the compound by dividing each by the smallest number of moles.
- STEP 5: If step 4 resulted in whole numbers, you are done! However, if there were decimals, you will need to multiply by small, whole numbers until you have whole numbers.

A way to remember those steps:

- A Poem by Joel Thompson:
- Percent to mass
- Mass to mole
- Divide by small
- Multiply 'til whole

Empirical Formula Determination

 Adipic acid contains 49.32% C, 43.84% O, and $6.85 \% \mathrm{H}$ by mass. What is the empirical formula of adipic acid?1.Treat \% as mass, and convert grams to moles
49.32 g carbon $\left\lvert\, \frac{1 \text { mol carbon }}{12.01 \mathrm{~g} \text { carbon }}=4.107\right.$ mol carbon
6.85 g hydrogen $\left\lvert\, \frac{1 \text { mol hydrogen }}{1.01 \mathrm{~g} \text { hydrogen }}=6.78 \mathrm{~mol}\right.$ hydrogen
43.84 g oxygen $\left\lvert\, \frac{1 \text { mol } \text { oxygen }}{16.00 \mathrm{~g} \text { oxygen }}=2.74 \mathrm{~mol}\right.$ oxygen

Empirical Formula Determination

2. Divide each value of moles by the smallest of the values.
Carbon: $\frac{4.107 \mathrm{~mol} \text { carbon }}{2.74 \mathrm{~mol}}=1.50$ Hydrogen: $\frac{6.78 \mathrm{~mol} \mathrm{hydrogen}}{2.74 \mathrm{~mol}}=2.47$

Oxygen: $\frac{2.74 \mathrm{~mol} \text { oxygen }}{2.74 \mathrm{~mol}}=1.0$

Empirical Formula Determination

3. Multiply each number by an integer to obtain all whole numbers.

Carbon: 1.50 Hydrogen: 2.50 Oxygen: 1.00

$$
\begin{array}{r}
\times 2 \\
\hline 3
\end{array}
$$

$$
\begin{array}{r}
\times 2 \\
\hline 5
\end{array}
$$

$$
\begin{array}{r}
\times 2 \\
\hline 2
\end{array}
$$

Empirical formula: $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$

Finding the Molecular Formula

The empirical formula for adipic acid is $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$. The molecular mass of adipic acid is $146 \mathrm{~g} / \mathrm{mol}$. What is the molecular formula of adipic acid?

1. Find the formula mass of $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$
$3(12.01 \mathrm{~g})+5(1.01)+2(16.00)=73.08 \mathrm{~g}$

Finding the Molecular Formula

The empirical formula for adipic acid is $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$. The molecular mass of adipic acid is $146 \mathrm{~g} / \mathrm{mol}$. What is the molecular formula of adipic acid? $3(12.01 \mathrm{~g})+5(1.01)+2(16.00)=73.08 \mathrm{~g}$
2. Divide the molecular mass by the mass given by the emipirical formula.
146
$\frac{146}{73}=2$

Finding the Molecular Formula

The empirical formula for adipic acid is $\mathrm{C}_{3} \mathrm{H}_{5} \mathrm{O}_{2}$. The molecular mass of adipic acid is $146 \mathrm{~g} / \mathrm{mol}$. What is the molecular formula of adipic acid?

$$
\frac{146}{72}=2 \quad\left(C_{3} H_{5} O_{2}\right) \times 2=C_{6} H_{10} O_{4}
$$

3. Multiply the empirical formula by this number to get the molecular formula.
