All About the Periodic Table

Essential Questions:

- How are elements arraigned in the periodic table
- Why do elements in the same group have similar properties?
- How does the periodic table predict the properties and behavior of elements?
- How are the group and period trends in the periodic table related to electron configuration?

Discovery of the Periodic Table

- Dmitri Mendeleev is known as the Father of the Periodic Table.
- In 1869) Organized elements according to atomic weights <u>BUT</u> switched numerous elements around to "fit" characteristics of a different group! (Te & I) Left gaps where he hypothesized new elements would be found and Fit IN (gallium & the Nobel Gases)

Periodic Law

 states that when all atoms are arranged in order of increasing atomic numbers, elements with similar properties will occur at periodic, regularly recurring, intervals.

Periodicity-Patterns evolve

History Continues

 Strutt and Ramsey- (1894) Found Noble Gaes and add a new "group" to Periodic Table-Mendeleev hypothesized would be there

•Mosely (1911) used x-rays to count protons in nucleus added Atomic Number to table Gave Experimental justifications for Mendeleevs Table (switching elements around)

Alkali metals

Properties of Metals

- Solid at room temperature
 - Except mercury which is a liquid
 - Ga melts in your hands!
- Conduct heat and electricity
- Malleable: hammered into thin sheets
- Ductile: drawn into wire
 - Lustrous: shiny

Properties of Non-Metals

- Located to the right of the step-wise line
- General properties of non-metals:
 - C, P, S, Se & I are brittle, dull looking solids at room temperature
 - Bromine is the only non-metal that is a liquid at room temperature
 - All others are gases
 - Poor conductors of heat and electricity

Properties of Metalloids

- Boron, Silicon, Germanium, Arsenic, Antimony, Tellurium, and Polonium.
- Semiconductors: have characteristics of conductors and insulators
 - Si & Ge are used in computer chips and other electronic devices

Alkali Metals

- Group 1
- Extremely reactive
- Not found free as elements in nature
- Explosive in water
 - (due to hydrogen gas production)
- Soft and can be cut with a knife
- All have 1 valence electron

Alkaline Earth Metals

- Group 2
- Very reactive
 - (Less reactive than Alkali metals)

Not found freely as elements in nature

- Denser, harder & stronger than Alkali metals
- All have 2 valence electrons

Groups 3-12 – Transitional Metals-"typical" metals malleable, conductive, ductile- jewelry-Coins- fairly un-reactive (Au, Ag, Cu,Pt)

Halogens

- Group 7
- Very reactive
 - (react strongly with metals to form salts)
- Exist as diatomic molecules in standard form
 - diatomic molecule= two of the same atoms
- 7 valence electrons

Super 7

- 7 elements that exist as diatomic molecules
 - Hydrogen, nitrogen, oxygen, fluorine, chlorine, bromine and iodine

Noble Gases

- Group 8
- Also known as the Inert Gases
- All but He (2) have 8 valence electrons (full Octet)
- Unreactive
 - Only a few compounds exist with a noble Gases
 - Largely unreactive because they have a full outer shell of electrons
 - Gases at room temperature

Periodic Trends

Objectives:

Define the properties of the elements that exhibit group and periodic trends.

Explain why these periodic trends exist.

Coulomb Force Law, Qualitatively $F = (k \cdot Q_1 \cdot Q_2) / r^2$

- Double one of the charges
 - force doubles
- Change sign of one of the charges
 - force changes direction
- Change sign of *both* charges
 - force stays the same
- Double the distance between charges - force four times weaker
- Double *both* charges
 - force four times stronger

ALL Periodic Table Trends

- Influenced by three factors:
 - 1. Energy Level
 - Higher energy levels are further away from the nucleus.
 - 2. <u>Charge on nucleus</u> (# protons)
 - More charge pulls electrons in closer. (+
 and attract each other)
- 3. <u>Shielding effect</u> (blocking effect?)

Shielding

The electron on the outermost energy level has to look through all the other energy levels to see the nucleus.

What do they influence?

- Energy levels and Shielding have an effect on the GROUP Trends
- Nuclear charge has an effect on a PERIOD Trends

Atomic Radius

- Half the Distance Between the Nuclei in a Molecule Consisting of Identical Atoms
- Increases down a group.
- Decreases left to right due to increased effective nuclear charge.
- Used to describe atoms size since electron cloud not well defined.

Atomic Size - Group trends

- As we increase the atomic number (or go down a group)...
- each atom has another energy level,
- so the atoms get
 bigger.

Atomic Size - Period Trends

- Going from left to right across a period, the size gets smaller.
- Electrons are in the same energy level.
- But, there is more <u>nuclear charge</u>.
- Outermost electrons are pulled closer.

DO YOU GET IT? QUESTION:

- Explain which atom has a larger atomic radii:
- Magnesium or Barium

Calcium or Bromine

Ionization Energy

 Energy required to remove an electron from a gaseous atom or ion.

$$\mathbf{X}_{(g)} \rightarrow \mathbf{X}^{1+}_{(g)} + \mathbf{e}^{-}$$

- First Ionization increases left to right within a period. (Since there are more protons, there is stronger electron attractions)
- First Ionization decreases down a group. (Electrons are further away from protons plus more shielding from full energy levels)
- Successive ionizations require more energy than the previous ionization.

Electronegativity

- Measure of an atoms desire to gain an electron.
 - Fluorine is the most EN
 - Francium is the least EN
- Increases left to right and up a group
- Consider the size of the atom and whether is wants to gain an electron to become a Noble gas.

Electronegativity Trends

- The further down a group, the farther the electron is away from the nucleus, and has more shielding so less attraction from the protons for electrons
- Going left to right across a period you are increasing the # of protons and shrinking the atoms size so increase the desire for more electrons.

Do you get it? QUESTION:

 Explaine which element has a greater electronegativity?

Lithium or Francium

Magnesium or Chlorine

Periodic Table of Electronegativities

1																
Н 2.1	2		be	elow 1	.0		2.	0-2.4				13	14	15	16	17
Li 1.0	Be 1.5		1.	0–1.4 5–1.9		2.5-2.9					В 2.0	C 2.5	N 3.0	0 3.5	F 4.0	
Na 0.9	Mg 1.2	3	4	5	6	7	8	9	10	11	12	A1 1.5	Si 1.8	Р 2.1	S 2.5	C1 3.0
K 0.8	Ca 1.0	Sc 1.3	Ti 1.5	V 1.6	Cr 1.6	Mn 1.5	Fe 1.8	Co 1.8	Ni 1.8	Cu 1.9	Zn 1.6	Ga 1.6	Ge 1.8	As 2.0	Se 2.4	Br 2.8
Rb 0.8	Sr 1.0	Y 1.2	Zr 1.4	Nb 1.6	Mo 1.8	Tc 1.9	Ru 2.2	Rh 2.2	Pd 2.2	Ag 1.9	Cd 1.7	In 1.7	Sn 1.8	Sb 1.9	Te 2.1	I 2.5
Cs 0.8	Ba 0.9	La* 1.1	Hf 1.3	Ta 1.5	W 2.4	Re 1.9	Os 2.2	Ir 2.2	Pt 2.2	Au 2.4	Hg 1.9	Tl 1.8	Pb 1.8	Bi 1.9	Po 2.0	At 2.2
Fr 0.7	Ra	Ac [†] [*] Lanthanides: 1.1–1.3														

Summation of Periodic Trends

For Review:

Valence electrons

- •Outermost electrons of the atom
- •Responsible for reactivity of the atom
- •Metals have low numbers, will tend to loose electrons to become stable with octet
- •Nonmetals high number of valence electronstend to gain more to become stable with octet

lons

- Some compounds are composed of particles called "ions"
 - An <u>ion</u> is an atom (or group of atoms) that has a <u>positive or negative charge</u>
- <u>Atoms</u> are neutral because the number of protons equals electrons
 - Positive and negative ions are formed when electrons are <u>transferred</u> (lost or gained) between atoms

Cations

- <u>Metals tend to LOSE electrons</u>, from their outer energy level
 - Sodium loses one: there are now more protons (11) than electrons (10), and thus a positively charged particle is formed = "<u>cation</u>"
 - The charge is written as a number followed by a plus sign: Na¹⁺
 - Now named a "sodium ion"

Anions

- <u>Nonmetals tend to GAIN</u> one or more electrons
 - Chlorine will gain one electron
 - Protons (17) no longer equals the electrons (18), so a charge of -1
 - Cl¹⁻ is re-named a "chloride ion"
 - Negative ions are called "<u>anions</u>"

Trends in Ionic Size: Cations

- Cations form by <u>losing</u> electrons.
- <u>Cations are smaller than the atom</u> <u>they came from</u> – not only do they lose electrons, they lose an *entire energy level*.
- Metals form cations.
 - Follow same trends as Atomic Radii

Ionic size: Anions

- Anions form by gaining electrons.
- Anions are bigger than the atom they came from – have the same energy level, but a greater area the nuclear charge needs to cover
- Nonmetals form anions.
 - Follow same trend as Atomic radii.

Graphic courtesy Wikimedia Commons user Popnose

DO you get it? Questions:

 Create the ions of the following and compare the size of the atom to the ion created:

Magnesium

Oxidation Numbers

- Oxidation numbers are the charges on ions
- General trend
 - Group 1 = +1
 - Group 2 = +2
 - Group 3 = +3
 - Group 4 = +/- 4
 - Group 5 = -3
 - Group 6 = -2
 - Group 7 = -1
 - Group 8 = 0

More on Oxidation Numbers

- These trends are base on the atoms trying to get to a stable "Noble Gas Configuration"
- There are exceptions to the general trend.
 - Bottom of group 5 contains metals which prefer to be cations...therefor they favor being a +5 vs. a -3