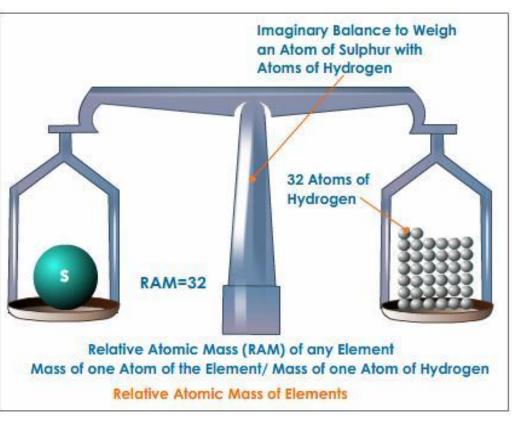
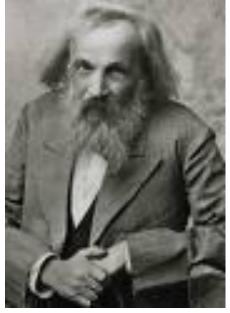
Unit Five: The Periodic Table Ref: 10.11 11.2 11.4

	GROUP		PF	-RI	OD)IC	TΔ	BI	F (DF	TH	FF		M	EN	ΓS			
								777	77		₽₽ ₽			~				18 VIIIA	
	1 IA	1 1.0079			\sim	<	\sim	http://www.ktf-split.hr/periodni/en/										2 4.0026	-
PERIOD	TT	RELATIVE ATOMIC MASS (1)					🔄 🔝 Me	🔝 Metal 🛛 📓 Semimetal 🔛 Nonmetal										Не	
	H		GROUP IUPAC GROUP CAS					Alkali metal 16 Chalcogens element					n la						
2	HYDROGEN	2 11A	1	1	3 111A	/ /	2 All	aline earth m	etal	17 Haloge	ens element			14 IVA			17 VIIA	HELIUM	-
	3 6.941	4 9.0122	ATÓMIC N	UMBER -	10.811		🔰 🔝 Tra	ansition metals	ş	18 Noble	gas		5 10.811	6 12.011	7 14.007	8 15.999	9 18.998	10 20.180	
2	Li	Be	s	SYMBOL -	- B		1.0	Lanthanide	STAN	DARD STATE	(25 °C; 101	kPa)	B	C	N	0	F	Ne	
	LITHIUM	BERYLLIUM			BORON			Actinide		- gas	Fe - solid		BORON	CARBON	NITROGEN	OXYGEN	FLUORINE	NEON	
/	11 22.990	12 24.305		EI E	MENT NAME	/	//	////////-	Ga	- liquid	Tc - synthe	tic	13 26.982	14 28.086	15 30.974	16 32.065	17 35.453	18 39.948	
3	Na	Mg							- VIIIB -				Al	Si	P	S	Cl	Ar	
	SODIUM	MAGNESIUM	3 IIIB	4 IVB	5 / VB	6 VIB	7 VIIB	8	9	10	11 IB	12 IIB	ALUMINIUM	SILICON	PHOSPHORUS	SULPHUR	CHLORINE	ARGON	
	19 39.098	20 40.078	21 44.956	22 47.867	23 50.942	24 51.996	25 54.938	26 55.845	27 58.933	28 58.693	29 63.546	30 65.39	31 69.723	32 72.64	33 74.922	34 78.96	35 79.904	36 83.80	
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
	POTASSIUM	CALCIUM	SCANDIUM	TITANIUM	VANADIUM	CHROMIUM	MANGANESE	IRON	COBALT	NICKEL	COPPER	ZINC	GALLIUM	GERMANIUM	ARSENIC	SELENIUM	BROMINE	KRYPTON	
	37 85.468	38 87.62	39 88.906	40 91.224	41 92.906	42 95.94	43 (98)	44 101.07	45 102.91	46 106.42	47 107.87	48 112.41	49 114.82	50 118.71	51 121.76	52 127.60	53 126.90	54 131.29	
5	Rb	Sr	Y	Zr	Nb	Mo	Te	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe	\geq
	RUBIDIUM	STRONTIUM	YTTRIUM	ZIRCONIUM	NIOBIUM		TECHNETIUM	and the second second	RHODIUM	PALLADIUM	SILVER	CADMIUM	INDIUM	TIN	ANTIMONY	TELLURIUM	IODINE	XENON	
	55 132.91	56 137.33	57-71	72 178.49	73 180.95	74 183.84	75 186.21	76 190.23	77 192.22	78 195.08	79 196.97	80 200.59	81 204.38	82 207.2	83 208.98	84 (209)	85 (210)	86 (222)	
.6	Cs	Ba	La-Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn	
/	CAESIUM	BARIUM	Lanthanide	HAFNIUM	TANTALUM	TUNGSTEN	RHENIUM	OSMIUM	IRIDIUM	PLATINUM	GOLD	MERCURY	THALLIUM	LEAD	BISMUTH	POLONIUM	ASTATINE	RADON	
	87 (223)	88 (226)	89-103	104 (261)		106 (266)	107 (264)	108 (277)		110 (281)			THALLIOM	114 (289)	DISMUTH	POLONIOM	ASTATINE	RADON	
7			Ac-Lr							TTT									
,	Fr	Ra	Actinide	IRſſ	IDb	Sg	IBlh	181\$	MIt	Uum	Uuu	Uub	$\langle \rangle$	Uuq					
	FRANCIUM	RADIUM	ricumue	RUTHERFORDIUM	DUBNIUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERIUM	UNUNNILIUM	UNUNUNIUM	UNUNBIUM		UNUNQUADIUM	9			A.	
/			/	LANTHANIDE							Copyright © 1998-2003 EniG. (eni@ktf-solit.hr)							,	
(1) Pure Appl. Chem., 73, No. 4, 667-683 (2001)				57 138.91		59 140.91	60 144.24	61 (145)	62 150.36	63 151.96	64 157.25	65 158.93	66 162.50	67 164.93	68 167.26			71 174.97	Ĺ
sign	ative atomic mass is shown with five hificant figures. For elements have no stable		La	Ce	Pr	Nd	IPm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu		
nuclides, the value enclosed in brackets indicates the mass number of the longest-lived											la su	•							
Hov	ope of the elemen vever three such	elements (Th, F		ACTINIDE	CERIUM	PRASEODYMIUM	NEODYMIUM	MIUM PROMETHIUM SAMARIUM EUROPIUM GADOLINIUM T					TERBIUM DYSPROSIUM HOLMIUM ERBIUM THULIUM YTTERBIUM LUTET						-
do con	have a charact position, and for flated.	eristic terrestria	al isotopic	89 (227)	90 232.04	91 231.04	92 238.03	93 (237)	94 (244)	95 (243)	96 (247)	97 (247)	98 (251)	99 (252)	100 (257)	101 (258)	102 (259)	103 (262)	
				Ac	Th	Pa	U	Np	Pu	Am	Cm	IBk	Cf	IEs	Fin	MId	No	Lr	
Editor: Aditya Vardhan (adivar@nettlinx.com)			llinx com)	ACTINIUM		PROTACTINIUM		NEPTUNIUM	PLUTONIUM	AMERICIUM		·	CALIFORNIUM			MENDELEVIUM		LAWRENCIUM	
201	or, etailya validina	en fannai Rigioa	/				Jiernem	a render		and the second					/		o b a b a b a b a b a b a b a b a b a b		J

History of P.T.

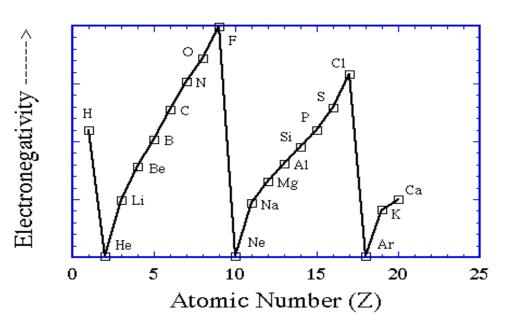

Chlorine

Bromine


lodine

•Dobrenier- (1829) Triads groups of three elements of similar chemical and physical properties.

 Cannizzarro (1860) Method for determining atomic weights of elements

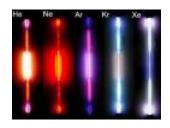

•Mendeleev (1869) Organized elements according to atomic weights <u>BUT</u> switched numerous elements around to "fit" characteristics of a different group! (Te & I) Left gaps where he hypothesized new elements would be found and Fit IN (gallium & the Nobel Gases)

<u>Modern Russian Table</u>

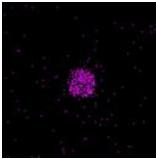
					•		Y N		
	H	период						E 3	
1	UR9401			and the local sector sector and				CRAMPIC	An 🕫 🔞 🛛
	T i i						5 E.		Sints and
2	L11 (MO)	1,0110200	NUMBER OF	158900	(1.960-0)	8,89400	1,010000	NUMBER OF	
			10 0 1				10 CO.		A THERE
3	Reserves(0)	3036910	Spearers Linearers	28,2672020	0.00000	10,14600	1142201	2010/01/10	ПЕРИОДИЧЕСКИН ЗАКОН Открыт в 1869году
			C 1		V n	Cr ×	Mn ^B	Fe ³⁸	Co "Ni "
4	10000 Reference	and and a state of the state of	LL JOSEF RETO CLARGE L	antes - 40002	School School	2,000001	SCHOOL SCHOOL	AUR30 50,04700	MARCH (O MOLS SURVE)
		» Zn	ⁿ Ga	² Ge	^a As	[×] Se	* Br	* Kr	
	ROMEON . MELL	61910 (1914	a,exe name	2250) (Jacan	NATES OF SHEER (P()400 0010	SUMON SHAR	RANCE DISTAN	
5	Rb *	Sr "	ч »	Zr *	№ "	Mo "	Te a	Ru "	Rh • Pa •
	nanoi maga	CINED.	1,3016(2) (1793)	N,28(2) (UPS180)	station/2) stat	11,51-55	normi ¹⁰⁸⁰	PIGAR HUND	regard manager (1997)
	Ag	e Cd	° In	^H Sn	" Sb	^a Te	8 I	^{se} Xe	
	NUMBER OF STREET	alantin ayani	NUMB NUMB	NUMBER OF STREET	SCHOOL CITIZEN	thicket the states	0096020	0014	State and a state
	Cs "	Ba 🐣	La ^u Lu ^a	Hf "	Ta ⁿ	W N	Re^	Os "	Ir 7 Pt 7
E.	CENT (CENT)	ENG COLOR		DARL .	DATE: DATE: D	HUHYO	NINI NUMBER	esui "	ergen N(2H)) autors
	* Au	" Hg	" T 1	^и Рь	• Bi	" Po	* At	* Ro	Li 1
	10000	103-00 IDB	toni,	anna anna	BOOT .	Participant and a second		NOL	Q44(2)
7	Fr_"	Ra	Ac [Lt]"	(\mathbf{Ku})	(N s) **	96		= .	Ісловные
	1953.510	MIN	**	LESSONAL C	TRUE SHOP		Contra		1603НАЧЕНИЯ
	de als		क्षांत्र वा	<u>+</u> 이 만도	ni.e. 10			12177-101	T
						19/20-01	AC 1400 140,901		Serveral Topolo Boom
uru -	1000	count lugar	INVECTOR	couvit (1944			CENTRE COLORED	16.0	nadi impadi kentu
A.o. 1	Th # 1	3. * TT	10 Dim 21	111 N. A.	n ⁿ Cm ⁿ	BL PIC	f * Re	10 F	Md* Nol [*] Lr)**
H,O	0 2020000 J	DURANTH HURS	400 CO.0411	SAME 2			D.(1997 194		200,00 200,000 200,000 200,000 (10,000,000) (10,000,000)
	2 3 4 5 6 7 2 5 6	2 Li 3 3 Ng 3	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	I H A.U.B 2 Li 3 He 4 B 3 Na B Adverse for the second term of the s	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

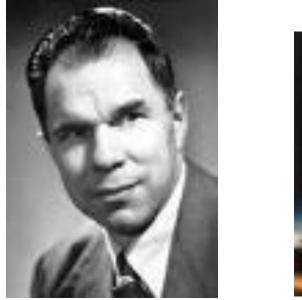
Mendeleevs Table (1871)

 Periodic Law- The physical and chemical properties of the elements are periodic functions of their atomic numbers (repeat at regular intervals)



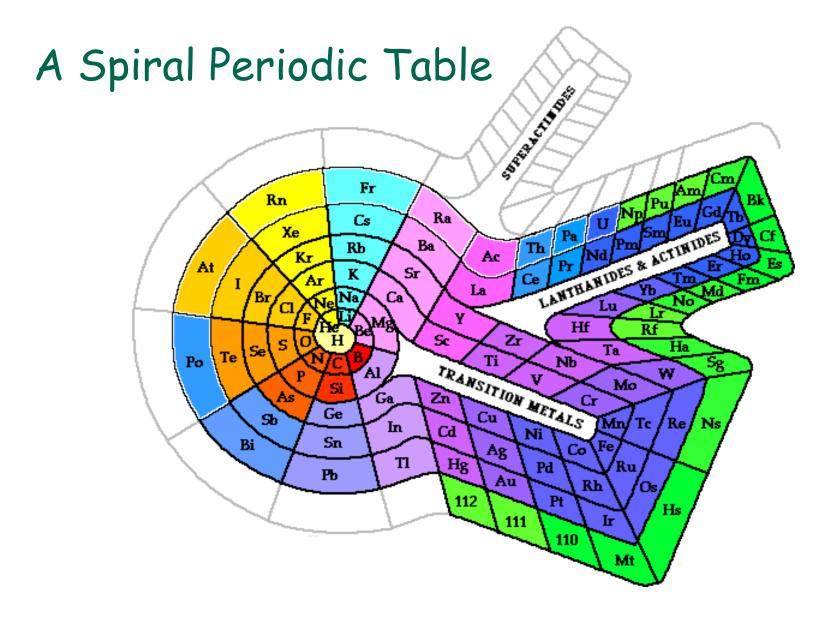
Periodicity-Patterns evolve

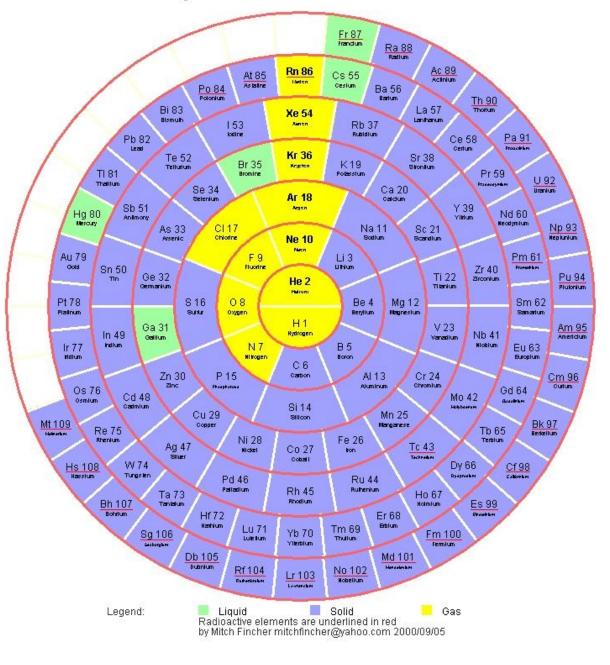



History Continues

 Strutt and Ramsey- (1894) Found Noble Gaes and add a new "group" to Periodic Table-Mendeleev hypothesized would be there

•Mosely (1911) used x-rays to count protons in nucleus added Atomic Number to table Gave Experimental justifications for Mendeleevs Table (switching elements around)




 Seaborg (1944) took U, Pa, Th out of main block elements and created two series!!! The physical and chemical properties trend runs horizontal along the series

*element 106 is named after him!!!

Mayan Periodic Chart of the Elements

"Mayan" Periodic Table

Alkaline 1 earth metals										D	eric		Noble gases Halogens 18						
	1Å		G	irol	ib o	or F	am	ily		F (eric		13	4.4	45			8A 2	
	Н	2 2A	21											14 4A	15 5A	16 6A	17 7A	He	
Alkali metals	Li Be											~	5 B	6 C	7 N	8 O	9 F	10 Ne	
	11 Na	12 Mg	3	4	5 6 7 8 9 Transition metals					10	11 12		13 Al	14 Si	15 P	16 S	17 Cl	18 Ar	
	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr	
	37 Rb	38 ST	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 	54 Xe	
	55 Cs	56 Ba	57 La*	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn	
	87 Fr	88 Ra	89 Ac†	104 Unq	105 Unp	106 Unh	107 Uns	108 Uno	109 Une	110 Uun	111 Uuu		04	30. 3	en : :	en:			
*Lanthanides 58 59 60 61 62 Ce Pr Nd Pm Sm									63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu		

95

Am

96

Cm

94

Pu

< y

98 Cf 99 Es 100

Fm

101

Md

102

No

103

Lr

97 Bk

Alkali metals

† Actinides

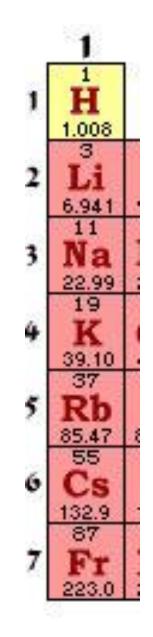
91 Pa 92 U 93

Np

90

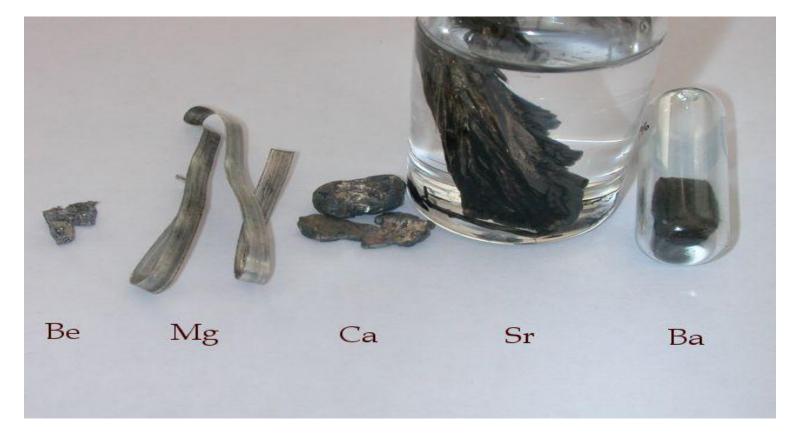
Th

The Properties of Group ONE: the Alkali Metals


Easily lose valence electron (Reducing agents) S¹ filling electrons

Slivery metals so soft can be cut with a knife

React with halogens to form salts

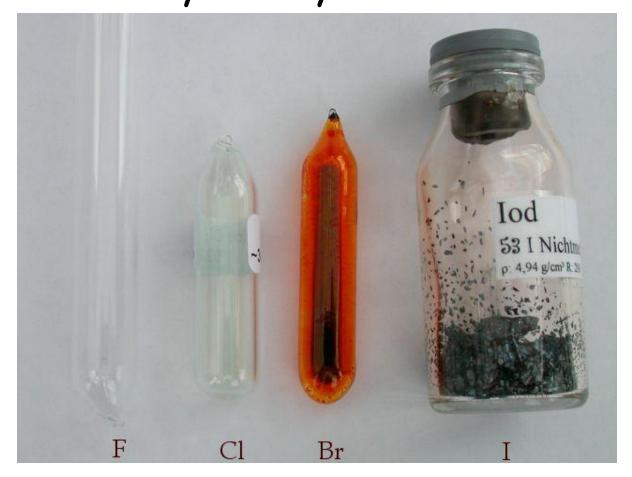

React violently with water- must be stored under kerosene

Groups of the Table

 Group 2- Alkaline Metals- very reactive loosely held 2 valence electrons never found free in nature used in the body as minerals (calcium)-

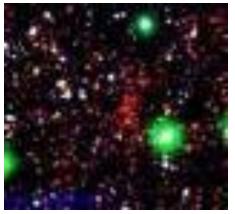
Reactivity of Metals

 Explain why barium and strontium metal must be stored under kerosene, while the other members of the group do not?



Groups 3-12 – Transitional Metals-"typical" metals malleable, conductive, ductile- jewelry-Coins- fairly un-reactive (Au, Ag, Cu,Pt)

Group 17- Halogens- most reactive nonmetals- react with metals to form salts used in lights- p filling STINKY Stinky stinky


Reactivity of Non-Metals

 Looking at the densities of the halogens, what do you hypothesize the reactivity trend to be within the group? Explain!

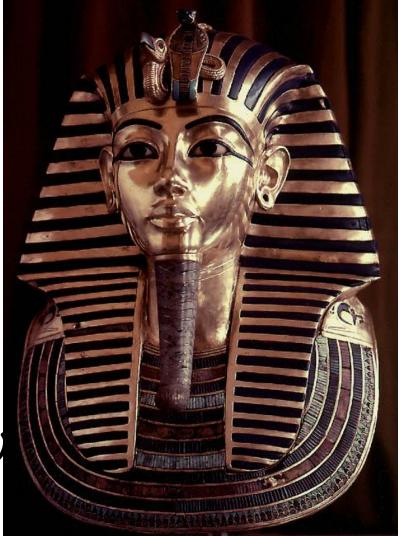
Group 18- Noble Gases-

Un-reactive gases- lights have octet- 8 valence electrons

Series

- Lanthanide series- trends for groups run horizontally rare earth metals- hard to separate from each other clump together phosphorus compounds used in OLDER TVs (f filling)
- Actinide Series- mostly man made-RADIOACTIVE- BOMBS (f filling) smoke detectors

Properties of Metals


Metals are good conductors of heat and electricity

Metals are malleable (can be shaped)

□ Metals are ductile (can be drawn into wires)

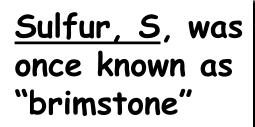
Metals have high tensile strength

Metals have luster (shiny)

<u>Potassium, K</u> reacts with water and must be stored in kerosene

<u>Copper, Cu</u>, is a relatively soft metal, and a very good electrical conductor.

<u>Zinc, Zn,</u> is more stable than potassium


<u>Mercury, Hg</u>, is the only metal that exists as a liquid at room temperature

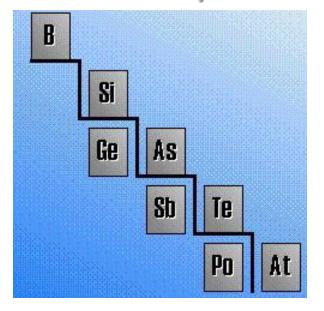
Carbon, the graphite in "pencil lead" is a great example of a nonmetallic element.

- Nonmetals are poor conductors of heat and electricity
- Nonmetals tend to be brittle
- Many nonmetals are gases at room temperature

Examples of Nonmetals

Microspheres of <u>phosphorus</u>, <u>P</u>, a reactive nonmetal

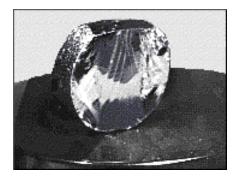
Graphite is not the only pure form of <u>carbon</u>, <u>C</u>. Diamond is also carbon; the color comes from impurities caught within the crystal structure



Allotropes

- Substances with the same chemical make-up but have different physical appearances in the same state of matter.
- Carbon has allotropic forms depending on particle packing ... pretty crystal with an orderly arrangement diamond that is hard used in jewelry or cutting devices

Properties of Metalloids


Metalloids straddle the border between metals and nonmetals on the periodic table.

They have properties of both metals and nonmetals.

Metalloids are more brittle than metals, less brittle than most nonmetallic solids

- Metalloids are semiconductors of electricity
- Some metalloids possess metallic luster

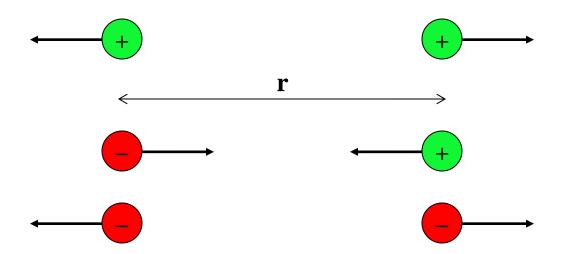
Silicon, Si – A Metalloid

Silicon has metallic luster
Silicon is brittle like a nonmetal
Silicon is a semiconductor of electricity

Other metalloids include:

- > Boron, B
- > Germanium, Ge
- > Arsenic, As
- > Antimony, Sb
- > Tellurium, Te

"Electrostatic" Force: the Coulomb Law


 Two charges, Q₁ and Q₂, separated by distance r exert a force on each other:

- *k* is a constant (9×10⁹),
- Q is in Coulombs,
- r in meters
 - One unit of charge (proton) has $Q = 1.6 \times 10^{-19}$ Coulombs

Coulomb Law Illustrated

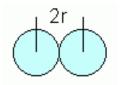
- Like charges repel
- Unlike charges attract

If charges are of same magnitude (and same separation), all the forces will be the same magnitude, with different directions.

Coulomb Force Law, Qualitatively $F = (k \cdot Q_1 \cdot Q_2) / r^2$

- Double one of the charges
 - force doubles
- Change sign of one of the charges
 - force changes direction
- Change sign of *both* charges
 - force stays the same
- Double the distance between charges
 - force four times weaker
- Double *both* charges
 - force four times stronger

The Reason for EVERY TREND


- Down a Group-
- Elements are gaining shells therefore the hold on the valence electron farther from nucleus and is SHEILDED by the inner shells nuclear force (hold on electrons by nucleus) is less
- Across a Period-
- Elements have the same number of shells BUT number of protons is increasing in the nucleus creating a greater nuclear force pulling electrons toward the nucleus-Zeff

ALL Periodic Table Trends

- Influenced by three factors:
 - 1. Energy Level
 - Higher energy levels are further away from the nucleus.
 - 2. <u>Charge on nucleus</u> (# protons)
 - More charge pulls electrons in closer. (+
 and attract each other)
 - Z_{eff}= Z S
 Z=p⁺ S= non-valence e⁻
- 3. <u>Shielding effect</u>

(blocking effect?)

Determination of Atomic Radius:

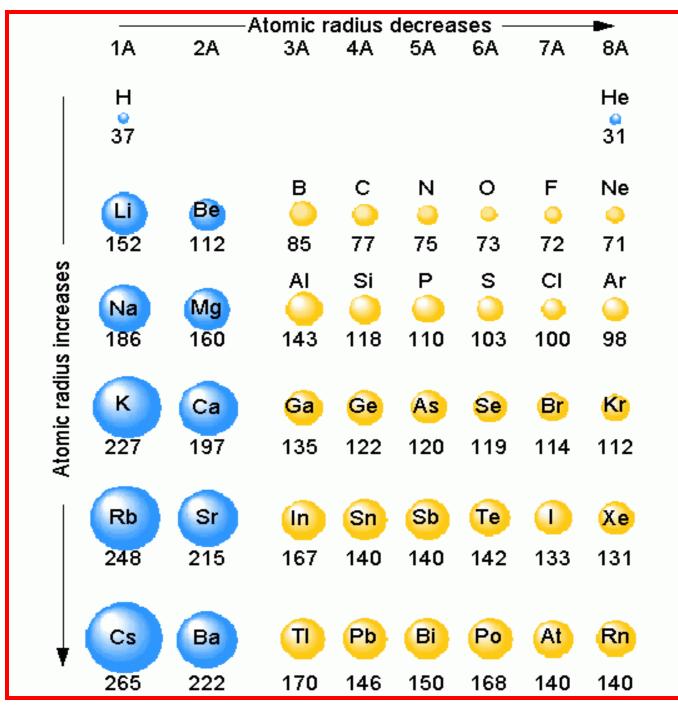
Half of the distance between nuceli in covalently bonded diatomic molecule

"covalent atomic radii"

<u>Periodic Trends in Atomic Radius</u>

Across a Period Radius → decreases
 Increased effective nuclear charge due
 to decreased shielding (hold from nucleus on e-)

●Down a Group ↓ Radius increases


Addition of principal quantum levels (shells)

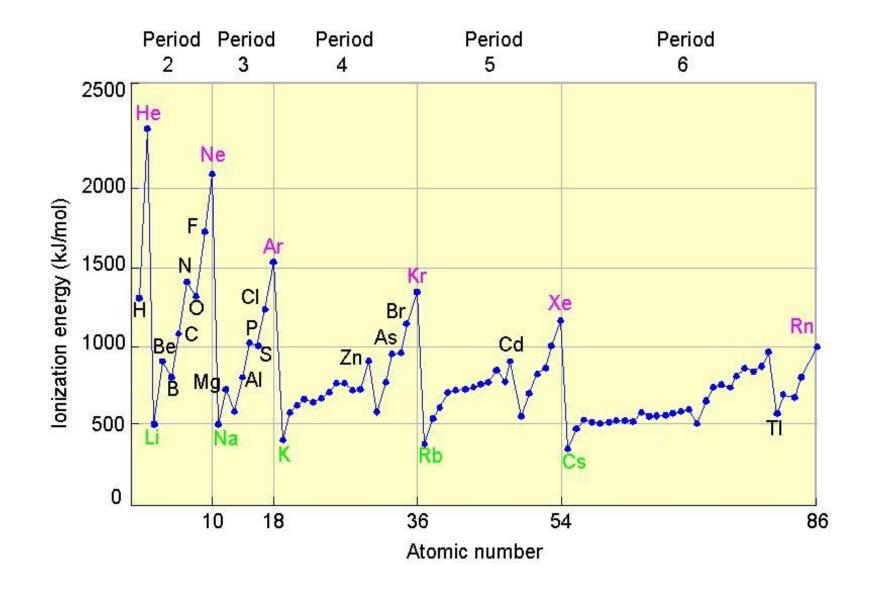
DO YOU GET IT? QUESTION:

- Explain which atom has a larger atomic radii:
- Magnesium or Barium

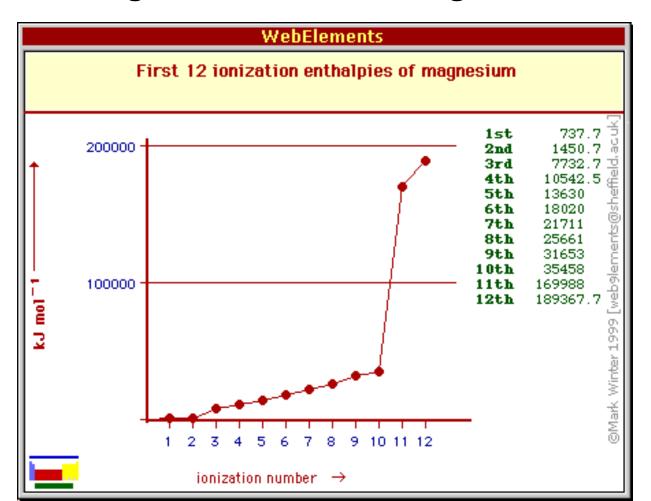
Calcium or Bromine

Table of Atomic Radii

<u>Ionization Energy</u> - the energy required to remove an electron from an atom


- Increases for successive electrons taken from the same atom
- Tends to increase across a period
 Electrons in the same quantum level do

not shield as effectively as electrons in inner levels


Irregularities at half filled and filled sublevels due to extra repulsion of electrons paired in orbitals, making them easier to remove

Tends to decrease down a group
 Outer electrons are farther from the nucleus

Table of 1st Ionization Energies

Ionization of Magnesium

A measure of the ability of an atom in a chemical bond to attract electrons toward itself

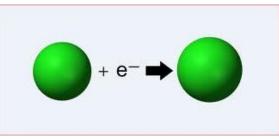
Across period → tend to increase -ZEFF
 more effective

 (attraction nucleus has for more e-)

●Down a Group ↓ decrease or remain the same (atom becomes bigger harder to hold e in outer ring because of shielding effect from nucleus)

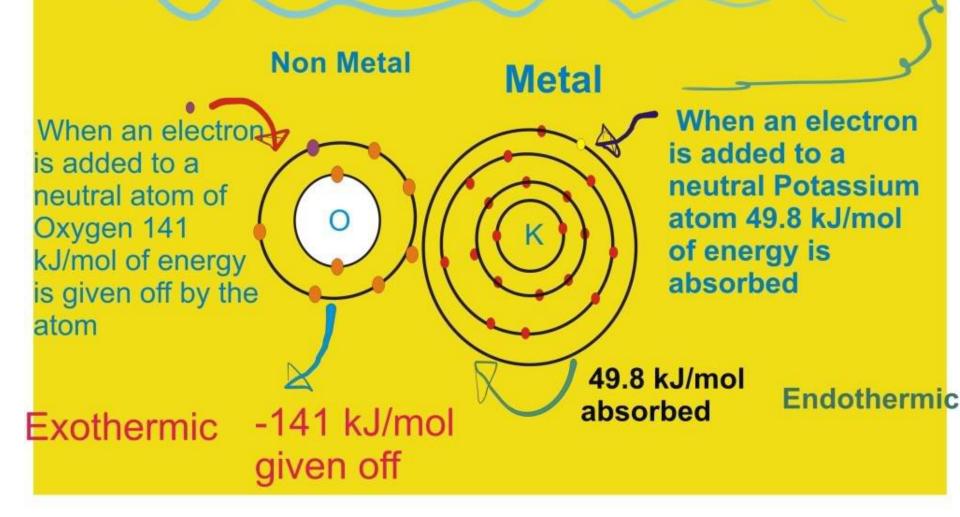
Do you get it? QUESTION:

- Explaine which element has a greater electronegativity?
- Lithium or Francium

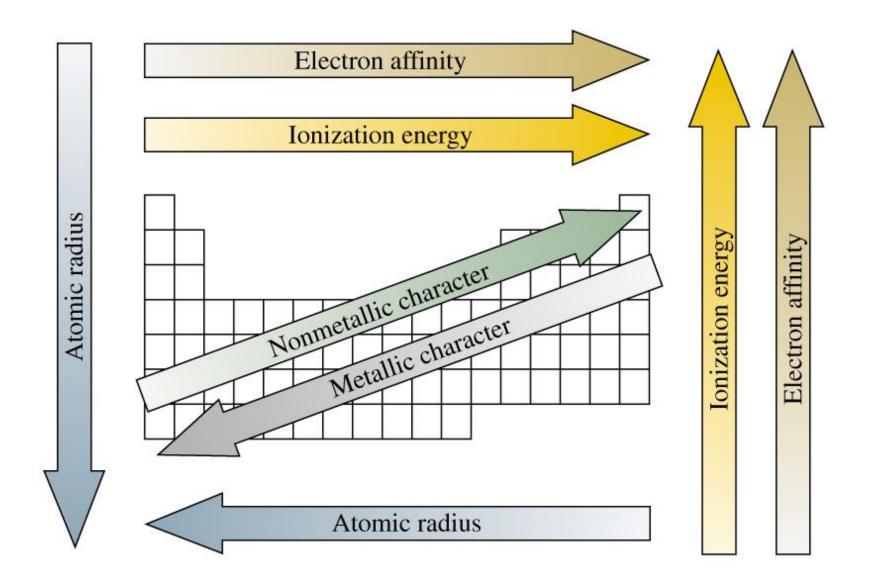

• Magnesium or Chlorine

Periodic Table of Electronegativities

1																
H 2.1	2		be	elow 1	.0		2.0	0-2.4				13	14	15	16	17
Li 1.0	Be 1.5			0–1.4 5–1.9				5–2.9 0–4.0				В 2.0	C 2.5	N 3.0	0 3.5	F 4.0
Na 0.9	Mg 1.2	3	4	5	6	7	8	9	10	11	12	Al 1.5	Si 1.8	Р 2.1	S 2.5	C1 3.0
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br
0.8	1.0	1.3	1.5	1.6	1.6	1.5	1.8	1.8	1.8	1.9	1.6	1.6	1.8	2.0	2.4	2.8
Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I
0.8	1.0	1.2	1.4	1.6	1.8	1.9	2.2	2.2	2.2	1.9	1.7	1.7	1.8	1.9	2.1	2.5
Cs	Ba	La*	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At
0.8	0.9	1.1	1.3	1.5	2.4	1.9	2.2	2.2	2.2	2.4	1.9	1.8	1.8	1.9	2.0	2.2
Fr	Ra	Ac [†]	Ac ⁺ [*] Lanthanides: 1.1–1.3													
0.7	0.9	1.1														


Electron Affinity

 Energy change when an e- is added to a neutral atom


- Metals- positive values-do not want to acquire more electrons endothermic process requiring energy to accept the e-
- Non-metals- negative or zero affinity valueswant to acquire more e- to achieve octet- gives off energy when acquired- exothermic-

Electron Affinity of Non-Metals vs Metals

Why is Group Two- Alkaline Earth metal the most positive?

Summation of Periodic Trends

For Review:

Valence electrons

- •Outermost electrons of the atom
- Responsible for reactivity of the atom
- •Metals have low numbers, will tend to loose electrons to become stable with octet
- •Nonmetals high number of valence electronstend to gain more to become stable with octet

Predicting Ionic Charges/ Oxidation Numbers

Group O	ne ·	_						•••••				_					_	
			e o	ne v	alen	ce e	elect	ron	E	asil	y los	st C	reat	ting	a po	ositiv	ve cl	harge
Na	a→	Na+	¹ +	1 e ⁻			K +1			C	S ⁺¹							
1 H 1.00794																	2 He 4.002602	
	4 Be .012182											5 B 10.811	6 C 12.0107	7 N 14.00674	8 O 15.9994	9 F 18.9984032	10 Ne 20.1797	
Na N	12 Mg 4.3050											13 Al 26.981538	14 Si 28.0855	15 P 30.973761	16 S 32.866	17 Cl 35.4527	18 Ar 39.948	
K (20 Ca 10.078	21 Sc 44.955910	²² Ti 47.867	23 V 50.9415	24 Cr 51.9961	25 Mn 54.938049	26 Fe 55.845	27 Co 58.933200	28 Ni 58.6934	29 Cu 63.546	30 Zn 65.39	31 Ga 69.723	32 Ge 72.61	33 As 74.92160	34 Se 78.96	35 Br 79.904	36 Kr 83.80	
Rb 85.4678 8		39 Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 107.8682	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 I 126.90447	54 Xe 131.29	
Cs 1 132.90545 13	56 Ba 37.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	80 Hg 200.59	81 Tl 204.3833	82 Pb 207.2	83 Bi 208.98038	84 Po (209)	85 At (210)	86 Rn (222)	
Fr 1	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 (269)	(272)	112 (277)		114 (289) (287)		116 (289)			

Group 17

Hav	Have seven val e-								Easily gain one					Creating a negative charge					
F+1e	·→	F ⁻¹		С	 -1				Br ⁻¹										
1 H 1.00794		_															He 4.002602		
3 Li 6.941	4 Be 9.012182											5 B 10.811	6 C 12.0107	7 N 14.00674	8 O 15.9994	9 F 18.9984032	10 Ne 20.1797		
11 Na 22.989770	12 Mg 24.3050											13 Al 26.981538	si	15 P 30.973761	16 S 32.066	17 Cl 35.4527	18 Ar 39.948		
19 K 39.0983	20 Ca 40.078	21 Sc 44.955910	²² Ti 47.867	23 V 50.9415	24 Cr 51.9961	25 Mn 54.938049	26 Fe 55.845	27 Co 58.933200	28 Ni 58.6934	29 Cu 63.546	30 Zn 65.39	31 Ga 69.723	32 Ge 72.61	33 As 74.92160	34 Se 78.96	35 Br 79.904	83.80		
37 Rb 85.4678	38 Sr 87.62	39 Y 88.90585	40 Zr 91.224	41 Nb 92.90638	42 Mo 95.94	43 Tc (98)	44 Ru 101.07	45 Rh 102.90550	46 Pd 106.42	47 Ag 107.8682	48 Cd 112.411	49 In 114.818	50 Sn 118.710	51 Sb 121.760	52 Te 127.60	53 I 126.90447	54 Xe 131.29		
55 Cs 132.90545	56 Ba 137.327	57 La 138.9055	72 Hf 178.49	73 Ta 180.9479	74 W 183.84	75 Re 186.207	76 Os 190.23	77 Ir 192.217	78 Pt 195.078	79 Au 196.96655	80 Hg 200.59	81 T1 204.3833	82 Pb 207.2	83 Bi 208.98038	84 Po (209)	85 At (210)	86 Rn (222)		
87 Fr (223)	88 Ra (226)	89 Ac (227)	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 (269)	111 (272)	112 (277)		114 (289) (287)		116 (289)				

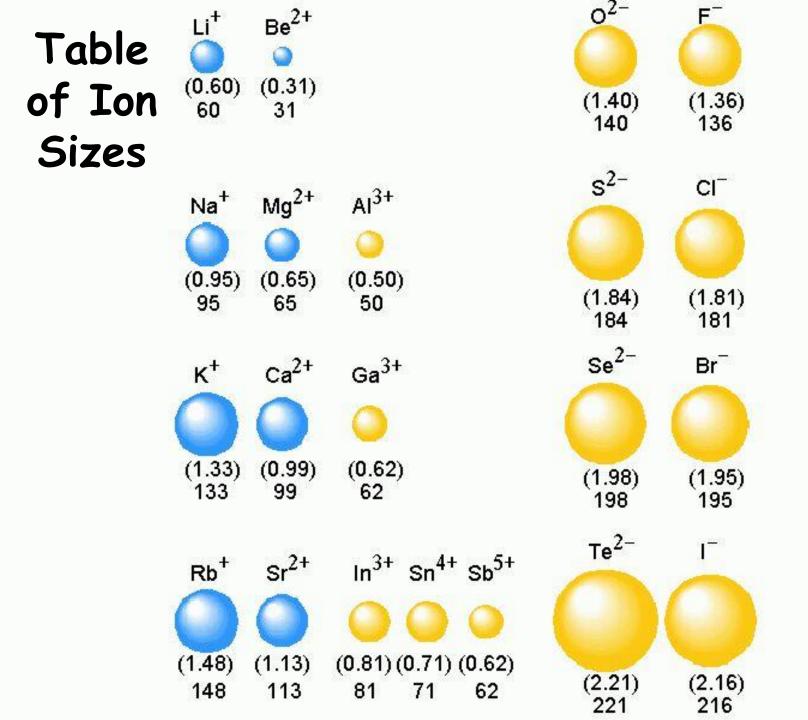
<u>Creating Ions</u>

- Oxidation Numbers- number that indicates how many electrons an atom gains or looses to become stable
- Draw sketch of PT with valence electrons (HOP SKOTCH)
- All elements want to achieve an octet , how will each group do that two choices gain or loose / share valence electrons

Ionic Radii

Cations

Anions


- Positively charged ions formed when an atom of a metal loses one or more electrons
 - Smaller than the corresponding atom (loss of e makes NF
 - increase
 - Negatively charged ions formed when nonmetallic atoms gain one or more electrons
 - Larger than the corresponding atom (gain of e makes NF less)

DO you get it? Questions:

 Create the ions of the following and compare the size of the atom to the ion created:

Magnesium

• Sulfur

Periodic Table of the Elements	Periodic	Table	of the	Elements
--------------------------------	----------	-------	--------	----------

1A 1 H								Dens	sity			©2010 1		menstine			8A 2 He
0.089	2A			Solid	or Liau	id: g/cm	at 20°C	and 1 a	atm			3A	4A	5A	6A	7A	0.179
3	4	1		contracted in the local division of the	Long the second s	t 0°C an						5	6	7	8	9	10
Li	Be	I		Devolution of								в	с	N	0	F	Ne
0.53	1.85	I .										2.34	2.26	1.25	1.43	1.70	0.90
11	12	1										13	14	15	16	17	18
Na	Mg	I .										AI	Si	Р	S	CI	Ar
0.97	1.74	ЗB	4B	5B	6B	7B	_	— 8B —	_	1B	2B	2.70	2.33	1.82	2.07	3.21	1.78
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
к	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
0.89	1.54	2.99	4.51	6.0	7.15	7.3	7.87	8.86	8.90	8.96	7.14	5.91	5.32	5.72	4.80	3.12	3.73
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
1.53	2.64	4.47	6.52	8.57	10.2	11	12.1	12.4	12.0	10.5	8.69	7.31	7.26	6.68	6.24	4.93	5.89
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
1.93	3.62	Lanthanides	13.3	16.4	19.3	20.8	22.6	22.5	21.5	19.3	13.53	11.8	11.3	9.79	9.2	unknown	9.73
87	88	89-103			800000	20 06 90 00.80		65 - 1999A	12525077	10.0-5							
Fr	Ra		*** El	ements	> 104 ex	kist only	for very	short h	alf-lifes	and the	data is	unknown	1.***				
unknown	5.0	Actinides															

Lanados	Lant	hanide	es
---------	------	--------	----

57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Nd Sm Gd Tb Tm Yb Ce Pm Dy Er La Pr Eu Ho Lu 7.01 7.26 7.52 8.23 9.07 9.32 6.90 6.15 6.77 6.77 5.24 7.90 8.55 8.80 9.84 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 Ac Th Pa υ Np Pu Am Cm Bk Cf Es Fm Md No Lr 10.0 11.7 15.4 19.1 20.2 19.7 13.6 13.5 14.8 unknown unknown unknown unknown unknown unknown

Actinides

						Perio	dic T	able	of the	Eler	nents	5					
1A							1	Melting	Point			http://ch	emistry.a	bout.com	n		8A
1								°C and	1 atm			©2010	Fodd Hel	menstine	9		2
н												About C	hemistry				Не
-259.1	2A							tp = triple	11.200 Farmer			3A	4A	5A	6A	7A	-268.93
3	4						s	p = sublim	ation point			5	6	7	8	9	10
Li	Be											в	С	N	0	F	Ne
180.5	1287											2075	3825 sp	-210	-218.79	-219.67	-248.609
11	12											13	14	15	16	17	18
Na	Mg		12022								10.00.00.00.0	AI	Si	Р	S	CI	Ar
97.8	650	3B	4B	5B	6B	7B	_	- 8B -	_	1B	2B	660.32	1414	44.15	115.21	-101.5	-189.36
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
к	Ca	Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
63.5	842	1541	1668	1910	1907	1246	1538	1495	1455	1084.62	419.53	29.76	938.25	817 tp	221	-7.2	-157.36
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
39.3	777	1522	1855	2477	2623	2157	2334	1964	1554.8	961.78	321.07	156.6	231.93	630.63	449.51	113.7	-111.74
55	56	57-71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	20.000	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
28.44	727	Lanthanides	2233	3017	3422	3185	3033	2446	1768.2	1064.18	-38.83	304	327.46	271.4	254	302	-71
87	88	89-103	100000	3 12	10000	1. 18 1927	5 2 0	12 242		10.020	1. 10725	16	-				
Fr	Ra		*** E	lements	> 104 e)	kist only	for very	short h	alf-lifes	and the	data is i	Inknown	1.***				
27	696	Actinides	6														

	- T - F	201	~~~	00
	1 11 1	101	IIG I	es
_		100.0		

Yb Nd Gd Tb Er Tm Ce Pr Pm Sm Eu Dy Ho La Lu Th U Cf Md No Ac Pa Np Pu Am Cm Bk Es Fm Lr unknown unknown

Actinides