Ions and Percent Purity

 Ions are the pieces that many compounds will fall apart into when forced apart.

% Purity = <u>Grams Pure</u> x100%
Grams Impure

lons

- So NaCl can be separated into 1Na⁺¹ and 1Cl⁻¹
- MgCl will separate into 1Mg⁺¹ and 2Cl⁻¹
- This can be used to figure out moles of ions present
- If you have 5 moles of MgCl₂ that means you will have 5 moles of Mg⁺¹ and 10 mole of Cl⁻¹
- You can just use conversion factors to make the changes ex 1mol MgCl₂ = 2 mol Cl⁻¹

Ions example

- If you have 145.2grams of Al₂O₃ how many moles of Al₂O₃ do you have?
- 145.2g/101.96g/mol= 1.424 mole Al₂O₃
- How many moles of Aluminium ions?
- $1.424 \text{ mole Al}_2O_3 | 2 \text{Mole Al ions} | = 2.848 \text{ mol}$ • 1 mole Al_2O_3 Al ions

* Purity will change the amount of grams by decreasing mass of reagent available

X grams pure _ <u>% Pure (grams impure)</u> 100 % = grams pure

If given grams they are grams impure If given Mole calculated grams are pure grams

Grams A | 1 mol A Molar Mass Moles of pure A

*If moles ions are needed

•	Grams A	1 mol	Moles of lons
		Molar Mass	Moles Source

120. grams of copper II chloride CuCl₂ that is 98.8 % pure, how many moles of copper II chloride are available?

X grams pure _	98.8 %	
120. g impure	100%	= 119 grams pure

<u>119 g</u>
 <u>1 mol A</u>
 <u>134.4 g</u>
 0.885 Moles of CuCl₂
 <u>119 g</u>
 <u>1 mol A</u>
 <u>2 moles Cl⁻</u>
 <u>134.4</u>
 <u>1 mol A</u>
 <u>1.77 Moles Cl⁻</u>

* Purity will change the amount of grams needed by increasing mass required

Moles A Molar Mass g
 1 mol = grams of solid of if pure

<u>grams pure</u> <u>%Pure</u> X grams impure 100 = grams impure to mass out How many grams of a 95.8 % pure stock bottle of copper II nitrate $Cu(NO_3)_2$ are needed to mass out if a chemist needed 0.250 moles for an experiment

If Mole NO₃ (2molNO₃/1mol Cu(NO₃)₂

to convert to mole compound

= 46.9 grams of solid of if pure

<u>46.9</u> X grams impure 100 = 49.0 grams to

mass out

*Given ion moles

