Scientific
 Notation

Name	Symbol	Value
Universal gravitational constant	G	$6.67 \times 10^{-11} \mathrm{~N}^{-1} \mathrm{~m}^{2} / \mathrm{kg}^{2}$
Acceleration due to gravity	g	$9.81 \mathrm{~m} / \mathrm{s}^{2}$
Speed of light in a vacuum	c	$3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
Speed of sound in air at STP		$3.31 \times 10^{2} \mathrm{~m} / \mathrm{s}$
Mass of Earth		$5.98 \times 10^{24} \mathrm{~kg}$
Mass of the Moon		$7.35 \times 10^{22} \mathrm{~kg}$
Mean radius of Earth		$6.37 \times 10^{6} \mathrm{~m}$
Mean radius of the Moon		$1.74 \times 10^{6} \mathrm{~m}$
Mean distance - Earth to the Moon		$3.84 \times 10^{8} \mathrm{~m}$
Mean distance - Earth to the Sun		$1.50 \times 10^{11} \mathrm{~m}$
Electrostatic constant	k	$8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$
1 elementary charge (charge of the electron)	e	$1.60 \times 10^{-19} \mathrm{C}$
1 coulomb (C)		6.25×10^{18} elementary charges
1 electronvolt (eV)		$1.60 \times 10^{-19} \mathrm{~J}$
Planck's constant	h	$6.63 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$
1 universal mass unit (u or amu)		$9.31 \times 10^{2} \mathrm{MeV}$
Rest mass of the electron	m_{e}	$9.11 \times 10^{-31} \mathrm{~kg}$
Rest mass of the proton	m_{p}	$1.67 \times 10^{-27} \mathrm{~kg}$
Rest mass of the neutron	m_{n}	$1.67 \times 10^{-27} \mathrm{~kg}$

Scientific Notation

In science, we deal with some very LARGE numbers:

1 mole $=602000000000000000000000$

In science, we deal with some very SMALL numbers:

Mass of an electron =
0.000000000000000000000000000000091 kg

Imagine the difficulty of calculating the mass of 1 mole of electrons!

0.000000000000000000000000000000091 kg $\times 60200000000000000000000$
?????????????????????????????????????

Scientific Notation:

A method of representing very large or very small numbers in the form: $M \times 10^{n}$
$\Rightarrow M$ is a number between 1 and 10
$\Rightarrow n$ is an integer

1
 2500000000 987654321

Step \#1: Insert an understood decimal point Step \#2: Decide where the decimal must end up so that one number is to its left
Step \#3: Count how many places you bounce the decimal point
Step \#4: Re-write in the form $M \times 10^{n}$

2.5×10^{9}

The exponent is the number of places we moved the decimal.

1
 0.0000579

Step \#2: Decide where the decimal must end up so that one number is to its left
Step \#3: Count how many places you bounce the decimal point
Step \#4: Re-write in the form $M \times 10^{n}$

5.79×10^{-5}

The exponent is negative because the number we started with was less than 1.

PERFORMING
 CALCULATIONS IN SCIENTIFIC NOTATION

3.45×10^{-2}

ADDITION AND SUBTRACTION

Review:

Scientific notation expresses a number in the form:

4×10^{6} If the exponents are

 $+3 \times 10^{6}$ the same, we simply add or subtract the numbers in front and bring the exponent down unchanged.4×10^{6} The same holds true for subtraction in scientific notation.
1×10^{6}

4×10^{6} If the exponents are $+3 \times 10^{5}$ NOT the same, we must move a decimal to make them the same.
$4.00 \times 10^{6} 4.00 \times 10^{6}$ $+3.00 \times 10^{5}+.30 \times 10^{6}$

Move the decimal on the smaller number!

A Problem for you...

$$
\begin{array}{r}
2.37 \times 10^{-6} \\
+3.48 \times 10^{-4} \\
\hline
\end{array}
$$

Solution...

$$
\begin{array}{r}
002.37 \times 10^{-6} \\
+3.48 \times 10^{-4} \\
\hline
\end{array}
$$

Solution...

0.0237×10^{-4}
$+3.48 \times 10^{-4}$

$$
3.5037 \times 10^{-4}
$$

PERFORMING
 CALCULATIONS IN SCIENTIFIC NOTATION

3.45×10^{-2}

Multiplication and Division

Multiplication and Division

Multiplication: You simply multiply the coefficients and then add the exponents
$\left(4.0 \times 10^{6}\right)\left(2.0 \times 10^{5}\right)=8.0 \times 10^{11}$

Division: You simply divide the coefficients and the subtract the exponents.
$\left(4.0 \times 10^{7}\right) /\left(2.0 \times 10^{5}\right)=2.0 \times 10^{2}$

Using a calculator with Scientific Notation 4.0×10^{6}

$\times 3.0 \times 10^{8}$

1. Find your EE or EXP button on your calculator!!
2. Plug in 4.0 HIT EE/EXP then the exponent 6
(DO NOT PLUG IN THE $\times 10!!!$)
3. Do the multiplication operation
4. Plug in 3.0 hit EE/Exp then the exponent 8
5. Then Equals VIOLA!!!
