

Name	Symbol	Value
Universal gravitational constant	G	$6.67 \times 10^{-11} \mathrm{N^{\bullet}m^{2}/kg^{2}}$
Acceleration due to gravity	g	9.81 m/s ²
Speed of light in a vacuum	с	$3.00 \times 10^8 \text{ m/s}$
Speed of sound in air at STP		3.31×10^2 m/s
Mass of Earth		5.98 × 10 ²⁴ kg
Mass of the Moon		$7.35 \times 10^{22} \text{ kg}$
Mean radius of Earth		6.37 × 10 ⁶ m
Mean radius of the Moon		1.74 × 10 ⁶ m
Mean distance – Earth to the Moon		3.84 × 10 ⁸ m
Mean distance – Earth to the Sun		$1.50 \times 10^{11} \text{ m}$
Electrostatic constant	k	8.99 × 10 ⁹ N•m ² /C ²
1 elementary charge (charge of the electron)	e	1.60 × 10 ⁻¹⁹ C
1 coulomb (C)		6.25×10^{18} elementary charges
1 electronvolt (eV)		1.60 × 10 ⁻¹⁹ J
Planck's constant	h	6.63 × 10− ³⁴ J•s
1 universal mass unit (u or amu)		9.31 × 10 ² MeV
Rest mass of the electron	me	$9.11 \times 10^{-31} \text{ kg}$
Rest mass of the proton	m_p	$1.67 \times 10^{-27} \text{ kg}$
Rest mass of the neutron	m_n	$1.67 \times 10^{-27} \text{ kg}$

Scientific Notation

In science, we deal with some very <u>LARGE</u> numbers:

In science, we deal with some very <u>SMALL</u> numbers:

Imagine the difficulty of calculating the mass of 1 mole of electrons!

Scientific Notation:

A method of representing very large or very small numbers in the form: $M \times 10^{n}$

M is a number between 1 and 10
n is an integer

Step #1: Insert an understood decimal point

- Step #2: Decide where the decimal must end up so that one number is to its left
- Step #3: Count how many places you bounce the decimal point
- Step #4: Re-write in the form $M \times 10^{n}$

2.5 x 10⁹

The exponent is the number of places we moved the decimal.

- Step #2: Decide where the decimal must end up so that one number is to its left
- Step #3: Count how many places you bounce the decimal point
- Step #4: Re-write in the form $M \times 10^{n}$

5.79 x 10⁻⁵

The exponent is negative because the number we started with was less than 1.

PERFORMING
CALCULATIONS
IN SCIENTIFIC
NOTATION3.45 x 10-2

ADDITION AND SUBTRACTION

4 x 10⁶ + 3 x 10⁶ 7 x 10⁶ <u>IF</u> the exponents are the same, we simply add or subtract the numbers in front and bring the exponent down unchanged.

The same holds true for subtraction in scientific notation.

4×10^{6} + 3×10^{5} If the exponents are NOT the same, we must move a decimal to <u>make</u> them the same.

Move the decimal on the <u>smaller</u> number!

<u>A Problem for you...</u>

2.37 x 10⁻⁶ + 3.48 x 10⁻⁴

Solution... 002.37×10^{-6} $+ 3.48 \times 10^{-4}$

Solution... 0.0237×10^{-4} $+ 3.48 \times 10^{-4}$ 3.5037×10^{-4}

PERFORMING
CALCULATIONS
IN SCIENTIFIC
NOTATION3.45 x 10-2

Multiplication and Division

Multiplication and Division

Multiplication: You simply multiply the coefficients and then add the exponents (4.0 × 10⁶) (2.0 × 10⁵)= 8.0 × 10¹¹

Division: You simply divide the coefficients and the subtract the exponents.

 $(4.0 \times 10^7) / (2.0 \times 10^5) = 2.0 \times 10^2$

Using a calculator with Scientific Notation 4.0×10^{6} $\times 3.0 \times 10^{8}$ 1.2×10^{15} 1. Find your EE or EXP button on your calculator!! 2. Plug in 4.0 HIT EE/EXP then

- the exponent 6 (DO NOT PLUG IN THE X 10!!!)
- 3. Do the multiplication operation

4. Plug in 3.0 hit EE/Exp then the exponent 8

5. Then Equals VIOLA!!!