Uncertainty and Significant Figures

Astrophysics made simple

Uncertainty in Measurement

A digit that must be estimated is called uncertain. A measurement always has some degree of uncertainty.

Why Is there Uncertainty?

* Measurements are performed with instruments
* No instrument can read to an infinite number of decimal places

Which of these balances has the greatest uncertainty in measurement?

Precision and Accuracy

Accuracy refers to the agreement of a particular value with the true value.

Precision refers to the degree of agreement among several measurements made in the same manner.

Neither
accurate nor precise

Precise but not accurate

Precise AND accurate

Types of Error

Random Error (Indeterminate Error) measurement has an equal probability of being high or low.

Systematic Error (Determinate Error) Occurs in the same direction each time (high or low), often resulting from poor technique or incorrect calibration.

Percent Error

Percent error: is calculated by subtracting the experimental value from the accepted value, then dividing the difference from the accepted value, and multiplying by 100.

Percent error $=\frac{\text { Value }_{\text {accepted }}-\text { Value }_{\text {experimental }}}{\text { Value }_{\text {accepted }}} \times 100$

Example \#1

Example 1. What is the percent error for a mass measurement of 17.7 g , given that the correct value is 21.2 g ?
Percent error $=$ Value $_{\text {accepted }}$-Value experimental $\times 100$

Percent error $=\frac{21.2 g-17.7 g}{21.2 g} \times 100$

Percent error $=16.5 \%$

Rules for Counting Significant Figures - Details

Nonzero integers always count as significant figures.

3456 has

4 significant figures

Rules for Counting Significant Figures - Details

Zeros

- Leading zeros do not count as significant figures.

0.0486 has
3 significant figures

Rules for Counting Significant Figures - Details

Zeros

- Captive zeros always count as significant figures.

$$
\begin{gathered}
16.07 \text { has } \\
4 \text { significant figures }
\end{gathered}
$$

Rules for Counting Significant Figures - Details

Zeros

Trailing zeros are significant only
if the number contains a decimal point.

> 9.300 has 4 significant figures

Rules for Counting Significant Figures - Details

Exact numbers have an infinite number of significant figures.

$$
1 \text { inch }=2.54 \mathrm{~cm} \text {, exactly }
$$

Scientific Notation - all of the numbers on front of the $\times 10$ are significant.
$6.022 \times 10^{23}=4$ significant figures.

Identifying \& Counting Significant Figures:

Use the Atlantic-Pacific Rule! If the decimal point is absent approach the number from the Atlantic side, go to your first non-zero number, and count all the way through. If the decimal point is present approach the number from the Pacific side go to your first non-zero number, and count all the way through.

Atlantic Ocean

Sig Fig Practice \#1

How many significant figures in each of the following?
$\underline{1.0070} \mathrm{~m} \rightarrow 5$ sig figs
$\underline{17.10} \mathrm{~kg} \rightarrow 4$ sig figs
100,890 L $\rightarrow 5$ sig figs
$3.29 \times 10^{3} s \rightarrow 3$ sig figs
$0.0054 \mathrm{~cm} \rightarrow 2$ sig figs
$3,200,000 \rightarrow 2$ sig figs

Rules for Significant Figures in Mathematical Operations

Multiplication and Division: \# sig figs in the result equals the number in the least precise measurement used in the calculation.

$$
\begin{gathered}
6.38 \times 2.0= \\
12.76 \rightarrow 13(2 \text { sig figs })
\end{gathered}
$$

Sig Fig Practice \#2

Calculation
Calculator says: $22.68 \mathrm{~m}^{2}$
Answer
$23 \mathrm{~m}^{2}$
$3.24 \mathrm{~m} \times 7.0 \mathrm{~m}$
$100.0 \mathrm{~g} \div 23.7 \mathrm{~cm}^{3} \quad 4.219409283 \mathrm{~g} / \mathrm{cm}^{3} \quad 4.22 \mathrm{~g} / \mathrm{cm}^{3}$
$0.02 \mathrm{~cm} \times 2.371 \mathrm{~cm} \quad 0.04742 \mathrm{~cm}^{2}$ $0.05 \mathrm{~cm}^{2}$
$710 \mathrm{~m} \div 3.0 \mathrm{~s} \quad 236.6666667 \mathrm{~m} / \mathrm{s}$ $240 \mathrm{~m} / \mathrm{s}$ $1818.2 \mathrm{lb} \times 3.23 \mathrm{ft} \quad 5872.786 \mathrm{lb} \cdot \mathrm{ft}$ $1.030 \mathrm{~g} \div 2.87 \mathrm{~mL} \quad 2.9561 \mathrm{~g} / \mathrm{mL}$ $5870 \mathrm{lb} \cdot f \dagger$ $2.96 \mathrm{~g} / \mathrm{mL}$

Rules for Significant Figures in Mathematical Operations

Addition and Subtraction: The number of decimal places in the result equals the number of decimal places in the least precise measurement.

$$
\begin{gathered}
6.8+11.934= \\
18.734 \rightarrow 18.7 \text { (3 sig figs) }
\end{gathered}
$$

Sig Fig Practice \#3

Calculation Calculator says:
$3.24 m+7.0 m$
$100.0 \mathrm{~g}-23.73 \mathrm{~g}$
$0.02 \mathrm{~cm}+2.371 \mathrm{~cm}$
$713.1 \mathrm{~L}-3.872 \mathrm{~L}$
$1818.2 \mathrm{lb}+3.37 \mathrm{lb}$
$2.030 \mathrm{~mL}-1.870 \mathrm{~mL}$

Answer
10.2 m
76.3 g
2.39 cm
709.2 L 1821.6 lb
0.160 mL

