Uncertainty and Significant Figures

Astrophysics made simple

Uncertainty in Measurement

A digit that must be estimated is called uncertain. A measurement always has some degree of uncertainty.

Why Is there Uncertainty?

- Measurements are performed with instruments
- No instrument can read to an infinite number of decimal places
 - Which of these balances has the greatest uncertainty in measurement?

Precision and Accuracy

Accuracy refers to the agreement of a particular value with the true value.

<u>Precision</u> refers to the degree of agreement among several measurements made in the same manner.

Neither accurate nor precise

Precise but not accurate

Precise AND accurate

Types of Error

Random Error (Indeterminate Error) - measurement has an equal probability of being high or low.

Systematic Error (Determinate Error) - Occurs in the same direction each time (high or low), often resulting from poor technique or incorrect calibration.

Percent Error

Percent error: is calculated by subtracting the experimental value from the accepted value, then dividing the difference from the accepted value, and multiplying by 100.

Percent error = Value_{accepted}-Value_{experimental} X 100 Value_{accepted}

Example #1

Example 1. What is the percent error for a mass measurement of 17.7g, given that the correct value is 21.2g?

Percent error =
$$\frac{21.2g-17.7g}{21.2g} \times 100$$

Percent error = 16.5%

Nonzero integers always count as significant figures.

3456 has

4 significant figures

<u>Zeros</u>

- Leading zeros do not count as significant figures.

0.0486 has3 significant figures

<u>Zeros</u>

- Captive zeros always count as significant figures.

16.07 has

4 significant figures

<u>Zeros</u>

Trailing zeros are significant only if the number contains a decimal point.

9.300 has

4 significant figures

Exact numbers have an *infinite* number of significant figures.

1 inch = 2.54 cm, exactly

Scientific Notation - all of the numbers on front of the x10 are significant.

 $6.022 \times 10^{23} = 4$ significant figures.

Identifying & Counting Significant Figures:

Use the Atlantic-Pacific Rule! If the decimal point is absent approach the number from the Atlantic side, go to your first non-zero number, and count all the way through. If the decimal point is present approach the number from the Pacific side go to your first non-zero number, and count all the way through.

Sig Fig Practice #1

How many significant figures in each of the following?

$$1.0070 \text{ m} \rightarrow 5 \text{ sig figs}$$

$$17.10 \text{ kg} \rightarrow 4 \text{ sig figs}$$

$$100,890 L \rightarrow 5 sig figs$$

$$3.29 \times 10^3 s \rightarrow 3 \text{ sig figs}$$

$$0.0054 \text{ cm} \rightarrow 2 \text{ sig figs}$$

$$3,200,000 \rightarrow 2 \text{ sig figs}$$

Rules for Significant Figures in Mathematical Operations

<u>Multiplication and Division</u>: # sig figs in the result equals the number in the least precise measurement used in the calculation.

$$6.38 \times 2.0 =$$
 12.76 \rightarrow 13 (2 sig figs)

Sig Fig Practice #2

Calculation	Calculator says:	Answer
$3.24 \text{ m} \times 7.0 \text{ m}$	22.68 m ²	23 m ²
$100.0 g \div 23.7 \text{ cm}^3$	4.219409283 g/cm ³	4.22 g/cm ³
$0.02 \text{ cm} \times 2.371 \text{ cm}$	0.04742 cm ²	0.05 cm ²
710 m ÷ 3.0 s	236.6666667 m/s	240 m/s
1818.2 lb x 3.23 ft	5872.786 lb·ft	5870 lb·ft
1.030 g ÷ 2.87 mL	2.9561 g/mL	2.96 g/mL

Rules for Significant Figures in Mathematical Operations

Addition and Subtraction: The number of decimal places in the result equals the number of decimal places in the least precise measurement.

$$6.8 + 11.934 =$$
 $18.734 \rightarrow 18.7$ (3 sig figs)

Sig Fig Practice #3

Calculation	Calculator says:	Answer
3.24 m + 7.0 m	10.24 m	10.2 m
100.0 g - 23.73 g	76.27 g	76.3 g
0.02 cm + 2.371 cm	2.391 cm	2.39 cm
713.1 L - 3.872 L	709.228 L	709.2 L
1818.2 lb + 3.37 lb	1821.57 lb	1821.6 lb
2.030 mL - 1.870 m	L 0.16 mL	0.160 mL