The SI System of Measurement

Objectives

\checkmark Use appropriate Metric/SI units of measurement \checkmark Use common SI prefixes
\checkmark Convert within a unit
\checkmark Understand and use common derived SI units
\checkmark Convert between English and Metric Units.

The Nature of Measurement

A Measurement is a quantitative observation consisting of TWO parts

> Part 1 - number
> Part 2 - scale (unit)

Examples:
20 grams
6.63×10^{-34} Joule \cdot seconds

The Fundamental SI Units

 (le Système International, SI)| Physical Quantity | Name | Abbreviation |
| :--- | :---: | :---: |
| Mass | kilogram | kg |
| Length | meter | m |
| Time | second | s |
| Temperature | Kelvin | K |
| Electric Current | Ampere | A |
| Amount of Substance | mole | mol |
| Luminous Intensity | candela | cd |

SI Prefixes

 Common to Chemistry| Prefix | Unit Abbr. | Exponent |
| :---: | :---: | :---: |
| Kilo | k | 10^{3} |
| Deci | d | 10^{-1} |
| Centi | c | 10^{-2} |
| Milli | m | 10^{-3} |
| Micro | μ | 10^{-6} |

Common Metric Prefixes

Kilo	Hecto	Deca	Liter Meter Gram	deci	centi	milli
1,000	100	10	1	0.1	0.01	0.001
10^{3}	10^{2}	10^{1}		10^{-1}	10^{-2}	10^{-3}
King	Hersey's	Daughter	Likes, Makes, Gulps	Delicious	Chocolate	Milk

Metric Conversions

Conversions in the metric system are merely a matter of moving a decimal point. The "base unit" means the you have a quantity (grams, meters, Liters, etc without a prefix.

Metric Conversions

kilo hecto deka Base deci centi milli unit
$18 \mathrm{~L} \xrightarrow{1} \xrightarrow{2} \xrightarrow{3}$
18 liters = 18000 milliliters
Example \#1: Convert 18 liters to milliliters

Metric Conversions

Example \#2: Convert 450 milligrams to grams

Metric Conversions

9

kilo hecto deka Base deci centi milli unit
$20 \mathrm{~kg} \xrightarrow{1} \xrightarrow{2} \xrightarrow{3} \xrightarrow{4} \xrightarrow{5}$

$$
20 \mathrm{~kg}=20000000 \mathrm{mg}
$$

Example \#3: Convert 20 kilograms to milligrams

Metric Conversion Practice

In practice a conversion factor is used to convert between units.
Example We know that 1 dollar $=4$ quarters
How many quarters in 20 dollars?
20 dollars $\times \frac{4 \text { quarters }}{1 \text { dotlar }}=80$ quarters

Number \cdot (old/ (nit) $\times\left[\frac{\text { new unit }}{\text { old/Cnit }}\right]=$ New number $\cdot($ new unit)
Conversion factor

Problem \#1

Convert 400 mL to Liters

$$
\begin{array}{l|c}
400 \mathrm{~mL} & 1 \mathrm{~L} \\
\hline & 1000 \mathrm{~mL}
\end{array}=.400 \mathrm{~L}
$$

$$
=0.4 \mathrm{~L}
$$

$$
=4 \times 10^{-1} \mathrm{~L}
$$

Problem \#2

Convert 10 meters to mm

10 m	1000 mm
	$=10000 \mathrm{~mm}$
	$=1 \times 10^{4} \mathrm{~mm}$

Problem \#3

Convert 73 grams to kg

$$
\begin{array}{rl}
73 \mathrm{~g} & 1 \mathrm{~kg} \\
\hline & 1000 \mathrm{~g}
\end{array}=0.073 \mathrm{~kg} .7 .10^{-2} \mathrm{~kg}
$$

Problem \#4

Convert 0.02 kilometers to m

0.02 km	1000 m
	1 km

$$
=2 \times 10^{1} \mathrm{~m}
$$

Problem \#5

Convert 20 centimeters to m

20 cm	1 m
	100 cm

$$
=2 \times 10^{-1} \mathrm{~m}
$$

Problem \#6

Convert 10 kilograms to grams

10 kg	1000 g
	1 kg

$$
=1 \times 10^{4} \mathrm{~g}
$$

Derived SI Units

| Quantity | Quantity Symbol | Unit abbreviation | Derivation |
| :--- | :---: | :---: | :---: | :---: |
| Area | A | m^{2} | length x width |
| Volume | V | m^{3} | length x width x height |
| Density | D | $\mathrm{kg} / \mathrm{m}^{3}$ | |
| Molar Mass | M | $\mathrm{kg} / \mathrm{mol}$ | $\frac{\text { mass }}{\text { volume }}$ |
| Concentration | c | M | $\frac{\text { mass }}{\text { amount of substance }}$ |
| Energy | E | J | volume substance |
| force x length | | | |

Derived Units

- Volume: is the space occupied by an object. The derived unit is the m^{3} cubic meter, which is equal to the volume of a cube whose edges are 1 meter long. This is too large so they use the cm^{3} in most calculations.
- $1 \mathrm{~cm}^{3}$ is equal to 1 mL which how most chemists refer to volumes of gases and liquids.

Derived Units

- Density: is the ratio of mass to volume.
- So is a measure of how much mass something has compared to it's size and is an important physical property that can often be used to identify a substance.

Solids	Density $\mathbf{(g / \mathbf { c m } ^ { \mathbf { 3 } })}$	Liquids	Density $\mathbf{(g / m L)}$
Cork	0.24	Gasoline	0.67
Ice	0.92	Kerosene	0.82
Copper	8.92	Water	0.998
Lead	11.35	Mercury	13.6

What can you conclude about the density of rubber, glycerol, oil, paraffin and cork?

Cork		Table 4 Densities of Various	ubstances
	Increasing Density	Substance	Density ($\left.\mathrm{g} / \mathrm{cm}^{3}\right)$ at $25^{\circ} \mathrm{C}$
		Hydrogen gas, $\mathrm{H}_{2}{ }^{*}$	0.0000824
Ethanol		Carbon dioxide gas, $\mathrm{CO}_{2}{ }^{*}$	0.00180
		Ethanol (ethyl alcohol), $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$	0.789
Paraffin		Water, $\mathrm{H}_{2} \mathrm{O}$	0.997
		Sucrose (table sugar), $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$	1.587
Oil		Sodium chloride, NaCl	2.164
		Aluminum, Al	2.699
		Iron, Fe	7.86
Rubbe		Copper, Cu	8.94
		Silver, Ag	10.5
Glycerol		Gold, Au	19.3
		Osmium, Os	22.6
\cdots		*at 1 atm	

Density- the amount of matter in a unit of volume-

can be used for identification purposes!

- Using the density triangle - any
variable equation can be found by covering the unknown-

USEFUL INFORMATION!

$$
1 \mathrm{~cm}^{3}=1 \mathrm{~mL}
$$

Density of water $=1 \mathrm{~g} / \mathrm{mL}$ therefore 50 g of water $=50 \mathrm{~mL}$!

Finding Density

1. What is the density of a cube of material that has a mass of $\mathbf{2 5 . 0 0}$ grams and a side dimension of 2.0 cm ?
2.A material has a mass of 45.8 grams and a volume of 7.15 mL . What is the density?

Volume can be determined two ways:

- Example One direct volume measurement.
- 3. Silver has a density of $10.5 \mathrm{~g} / \mathrm{cm}^{3}$. A cube with a side dimension of 2.0 cm is found. It has a mass of 84.0 grams. Could the cube be silver?
- Example two indirect volume measurement:
- 4. A necklace is found with a mass of $\mathbf{2 1 . 5}$ grams. When it is placed in 50.0 mL of water the water rises to 51.7 mL . Is the necklace silver?

Finding Volume

- 7. Gold has a density of $19.34 \mathrm{~g} / \mathrm{cm}^{3}$. A nugget is found with a mass of 5.60 grams. What should 50.0 mL of water rise to if the nugget is gold?

Finding Mass
8. Copper has a density of $8.89 \mathrm{~g} / \mathrm{mL}$. A cube of copper with a side dimension of 3.0 cm is found. What will the mass be?

English \& Metric conversions

English units are what we use in the US.
" For example 1 yard = 3 feet
To convert between these two system of units, we need to again use conversion factors.
To use conversion factors we will use dimensional analysis, which is a method of using factor-label cancellation.
Number \cdot (old/(nit) $\times\left[\frac{\text { new unit }}{\text { old/hit }}\right]=$ New number $\cdot($ new unit)

Examples of Conversion Factors

$1 \mathrm{in}=.2.54 \mathrm{~cm}$
1 meter $=3.2808 \mathrm{ft}$
$1 \mathrm{ft}=12$ inches
$1 \mathrm{~kg}=2.205 \mathrm{lbs}$.
1 fathom $=6 \mathrm{ft}$
$1 \mathrm{~km}=0.6214$ miles
$1 \mathrm{lb} .=16$ ounces
$0.943 \mathrm{~L}=1$ quart
1 gallon $=4$ Quarts

Type 1: Conversion of Distance (always convert to metric)

- Example 1: Sammy the sail slithers 5.05 in how far is that in cm ?
$\cdot 5.05$ inches $=? \mathrm{Cm} \quad 5.050 \mathrm{in}\left|\frac{2.54 \mathrm{~cm}}{1 \text { inch }}\right|=12.8 \mathrm{~cm}$

Example 2 : Bob the bunny hops 6.63 yards. How far is that in meters?

| 3.00 yds | 12.00 in | $2.54 \mathrm{~cm}=606 \mathrm{~cm}=6.06$ meters |
| :--- | :---: | :---: | :---: |
| 1 yd | 1 ft | 1 in |

Type 2: Volume Conversions

- 3. Mrs. Gleavy drank 1.55 gallons of water in a day. How many liters did she drink that day?
- 1.54 gal $\left.\frac{4 \text { qts } 0.943 \mathrm{~L}}{1 \mathrm{gal} 1 \mathrm{qt}} \right\rvert\,=5.81 \mathrm{~L}$

Type 3: Conversion of Mass

- 4. A child's chair can hold 150 kilograms. A person that weighs 195.0 pounds sits on the chair will it break?
- $195.0 \mathrm{lbs}\left|\frac{1 \mathrm{~kg}}{2.205 \mathrm{lb}}\right|=88.435$ kilograms

NO! $88.44 \mathrm{~kg}<150 \mathrm{~kg}$

Type Four: Two Units !!!!

- 5. A speed limit sign reads $40 \mathrm{~km} / \mathrm{hour}$. You are traveling $73.3 \mathrm{ft} / \mathrm{min}$. Should you get a ticket?

73.3 ft	60.0 min	12 in	$2.54 \mathrm{~cm}=134051.9 \mathrm{~cm} / \mathrm{hr}$
Min	1 hr	1 ft	1 in

$=1.34 \mathrm{~km} / \mathrm{hr} \mathrm{NO}<40 \mathrm{~km} / \mathrm{Hr}$

Example \#1

How many centimeters is a 100 .yd football field? Remember 1 yard $=3 \mathrm{ft}$ and 1 meter $=3.2808 \mathrm{ft}$
$100 \mathrm{dt} x\left[\frac{3 \mathrm{ft}}{\mathrm{xd}}\right]=300 \mathrm{ftx}\left[\frac{1 \mathrm{~m}}{3.2808}\right]=$
$91.44 \mathrm{~m}=9140 \mathrm{~cm}$

Example \#2

How many grams are in a 7.0 ounce package of $m \& m$'s? $1 \mathrm{lbs}=16$ ounce and $1 \mathrm{~kg}=2.205 \mathrm{lbs}$
$7.00 \mathrm{z} \times\left[\frac{1 \mathrm{lbs}}{16 \mathrm{dz}}\right]=.438 \mathrm{k} \times\left[\frac{1 \mathrm{~kg}}{2.205 \mathrm{lbs}}\right]$
$0.199 \mathrm{~kg}=200 \mathrm{~g}$

You Try:

- 1. A polar bear with a weight of 275 pounds sit on a chair that can hold 98.0 kilograms. Will the chair break?

\#2.

- A runner needs to complete a 5 k road race. He is running 2.20 miles to see his predicted time. IS he running the correct distance?

\#3

- A speed limit sign reads $30 \mathrm{~km} / \mathrm{hr}$. Your are traveling $25.0 \mathrm{ft} / \mathrm{sec}$. Will you get a ticket?

