S I THINK I CAN TRULY SAY
(] Cartoon courtesy of NearingZero,net THAT IN THIS BOOK WE HAVE ALL THE ELEMENTS OF A FIRST-CLASS THRILER...

Composino	
Carbon	98.7%
Aluminium	0.55%
Sinicon	0.09%
Oxygen	0.23%
Nitrogen	0.18%
Sulphur	0.22%
Chlorine	0.03%

Stoichiometry

Stoichiometry - The study of quantities of materials consumed and produced in chemical reactions.

Review: The Mole

divide by $M M$
grams multiply by MM
multiply by 6.022×10^{23}
moles
molecules divide by 6.022×10^{23}
\square The number equal to the number of carbon atoms in exactly 12 grams of pure ${ }^{12} \mathrm{C}$.
$\square 1$ mole of anything $=6.022 \times 10^{23}$ units of that thing

Using Chemical Formulas:
 Element \& compound masses

* problems that convert one substance to another require mole-to-mole ratios!

How many grams of H_{2} can be obtained from the electrolysis of 100.0 g of $\mathrm{H}_{2} \mathrm{O}$?

How many grams of CuO can be made from a piece of copper wire weighing 0.2134 g?

Review: Molar Mass

A substance's molar mass (molecular weight) is the mass in grams of one mole of the compound.

$$
\begin{aligned}
\mathrm{CO}_{2} & =44.01 \text { grams per mole } \\
\mathrm{H}_{2} \mathrm{O} & =18.02 \text { grams per mole } \\
\mathrm{Ca}(\mathrm{OH})_{2} & =74.10 \text { grams per mole }
\end{aligned}
$$

Review: Chemical Equations

Chemical change involves a reorganization of
the atoms in one or more substances.

$$
\underset{\text { reactants }}{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2}} \rightarrow \underset{\text { products }}{2 \mathrm{CO}_{2}}+3 \mathrm{H}_{2} \mathrm{O}
$$

When the equation is balanced it has quantitative significance:
1 mole of ethanol reacts with 3 moles of oxygen to produce
$\underline{2}$ moles of carbon dioxide and $\mathbf{3}$ moles of water

Mole Relations from Chemical Equations

* ratios of balanced coefficients $=$ mole ratios

$$
\begin{aligned}
& \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~s})+6 \mathrm{O}_{2}(\mathrm{~g})=6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \\
& \frac{1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{6 \mathrm{~mol} \mathrm{O}_{2}} \frac{1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{6 \mathrm{~mol} \mathrm{co}}{ }_{2} \\
& \begin{array}{c}
\text { starting } \\
\mathrm{mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \\
6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
\end{array} \\
& \text { ratio }
\end{aligned}
$$

how many grams of oxygen are required to burn exactly 1 kg of glucose?

Calculating Masses of Reactants and Products

1. Balance the equation.
2. Convert mass to moles.
3. Set up mole ratios.
4. Use mole ratios to calculate moles of desired substituent.
5. Convert moles to grams, if necessary.

Stoichiometry MAP 1 mole A \#B MW B

Grams of A Grams B MW A \#A 1 mole B

A is the starting material given in the problem not always the reactant
B is the desired material in the problem needed
\#B / \#A is the mole ratio from the balanced equation

Solving Problems

Problem Type

Grams A \rightarrow Grams B

Use Steps

Grams A \rightarrow Moles B
All Three

Moles A \rightarrow Grams B
1 \& 2

Moles A \rightarrow Moles B
JUST 2

Working a Stoichiometry Problem

6.50 grams of aluminum reacts with an excess of oxygen. How many grams of aluminum oxide are formed.

1. Identify reactants and products and write the balanced equation.
$4 \mathrm{Al}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}$
a. Every reaction needs a yield sign
b. What are the reactants?
c. What are the products?
d. What are the balanced coefficients?

Working a Stoichiometry Problem

gram A to gram B

100.0 grams of aluminum reacts with an excess of oxygen. How many grams of aluminum oxide are formed?

$$
4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}
$$

$189.0 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}$

Grams A to Moles B $4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}$

- 3. 55.00 grams of aluminum oxide formed, how many moles of oxygen reacted?

- $55.0 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}$	1 mole	3 mole O$_{2}$
	101.96	2 moles $\mathrm{Al}_{2} \mathrm{O}_{3}$

0.809 moles O_{2}

Moles A to Grams B $4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}$

5. 0.750 moles of aluminum reacted, how many grams of oxygen are required to react?

- 0.750 molesAI

$$
\begin{array}{r|r}
3{\text { mole } \mathrm{O}_{2}} & 32.0 \mathrm{~g} \\
\hline 4 \text { moles AI } & 1 \mathrm{~mol} \mathrm{O}_{2}
\end{array}
$$

18.0 grams O_{2}

Moles A to Moles B $4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}$

- 0.750 moles of aluminum oxide formed, how many moles of oxygen reacted?

0.750 molesAl O_{3}	3 mole O_{2}
2 moles $\mathrm{Al}_{2} \mathrm{O}_{3}$	

1.12 moles O_{2}

Limiting Reactant or Reagent

The limiting reactant is the reactant that is consumed first, limiting the amounts of products formed.

Tend to be: expensive, rare, or toxic reagent

Excess Reagent

- The more abundant reactant. Does not run out at the end of the experiment. If a chemist has a choice it will
- Tend to be cheaper,
- abundant,
- non-toxic

Methane combusts to give a lot of heat and energy.
What reagent do you think a chemist would hold as the limiting reagent? Why?

Limiting Reagents

$$
2 \mathrm{C}_{\mathrm{g}} \mathrm{H}_{18}(1)+25 \mathrm{O}_{2}(\mathrm{~g})=16 \mathrm{OO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(1)
$$

octane is limiting engine stalls

optimal

oxygen is limiting dirty exhaust

Determine the Limiting Reagent

- Compare the amount each reagent can produce the one that produces the least is the limiting reagent. For the problem below solve 2 gram to gram problems and evaluate: $4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}$

Given 50.00 grams of aluminum and 50.00 grams of oxygen what is the maximum mass of aluminum oxide that may be produced? What is the limiting reagent?

	1 mol Al	$2 \mathrm{Al}_{2} \mathrm{O}_{3}$	101.96 g	
50.0 g Al	27.0 grams	4 Al	$1 \mathrm{moles} \mathrm{Al}_{2} \mathrm{O}_{3}$	$=94.4 \mathrm{~g} \mathrm{Al}_{2} \mathrm{O}_{3}$

	$1 \mathrm{~mol} \mathrm{O}_{2}$	$2 \mathrm{Al}_{2} \mathrm{O}_{3}$	101.96 g
$50.0 \mathrm{~g} \mathrm{O}_{2}$	$\begin{array}{l}\text { 3 }\end{array}$		
22.0 grams	$3 \mathrm{O}_{2}$	$1 \mathrm{moles} \mathrm{Al} \mathrm{O}_{3}$	

Therefore only 94.4 grams can be made! How much oxygen remains?

Determine the leftover amount of excess reagent

- Subtract what was produced from what could have been produced and send backwards:
- $4 \mathrm{Al}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Al}_{2} \mathrm{O}_{3}$
- 106.0 grams- 94.4 grams $=11.6$ grams

11.6 g	$1 \mathrm{~mol} \mathrm{Al}_{2} \mathrm{O}_{3}$	$3 \mathrm{O}_{2}$	$32.0 \mathrm{~g} \mathrm{O}_{2}$
101.96 grams	$2 \mathrm{Al}_{2} \mathrm{O}_{3}$	1 mole AI $=$	

5.46 grams of Oxygen leftover

Percent Yield

- Find the theoretical amount or (Mathematical result)
- Divide what was obtained (Lab or
 Actual) by the theoretical
- Multiply by 100
- Yields are seldom 100\% due to four factors:

Poor Collection,
Impure reagents, Incomplete reactions,
and Competing side reactions

Percent Yield

Cindy reacts 4.00 grams of aluminum with an

 excess of oxygen and formed 7.05 grams of aluminum oxide. Please calculate her percent yield. Calc Theo:- $4.00 \mathrm{~g} \mathrm{Al} \quad$| 1 mol Al | $2 \mathrm{Al}_{2} \mathrm{O}_{3}$ | 101.96 g |
| :---: | :---: | :---: |
| 27.0 g | 4 Al | $1 \mathrm{molAl}_{2} \mathrm{O}_{3}$ |

Should get: 7.55 grams $\mathrm{Al}_{2} \mathrm{O}_{3}$
$\%$ Yield $=7.05 / 7.55 \times 100=$
93.4\%

