UNIT 1

Matter

OBJECTIVES:

• Define Chemistry

- Understand and describe the different states of matter
- Be able to classify types matter
- Understand and classify the properties and changes that matter can undergo

WHAT IS CHEMISTRY?

- Known as the *central science*
- Deals with studying and analyzing the materials of the universe and the changes that these materials undergo.
- The study of mater, it's properties and the changes it can undergo

OBSERVATIONS

- Qualitative: descriptive observation that is *not numerical*.
 - Example: This apple is red.

• Quantitative: Numerical observation.

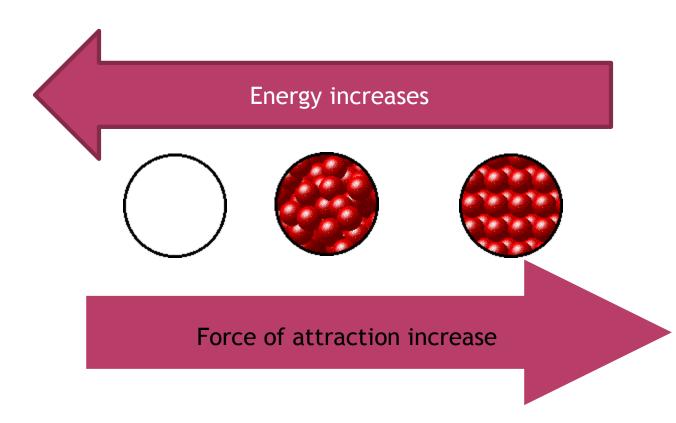
 Example: The temperature of this room is 23°C.

LAWS, HYPOTHESES, & THEORIES

- Scientific Laws summarize facts, but do not make any attempt to explain the facts.
 - Example: Law of Conservation of Mass states that *matter can neither be created nor destroyed*.
- A Hypothesis is a tentative, reasonable explanation of the facts or the laws.
- Scientific Theory is a hypothesis that has withstood extensive testing and is known to be true.

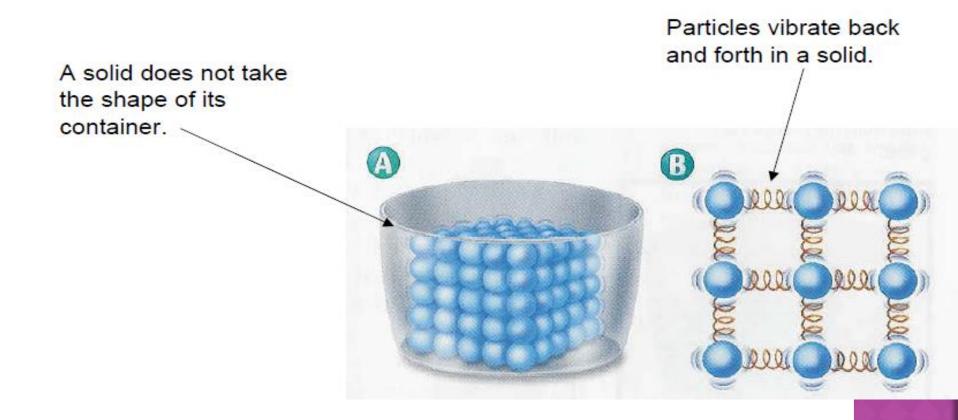
Anything that has mass and takes up space.

- Mass = measure of the amount of matter present.
- Weight = force of gravity upon on object's mass.
 - Even though the definitions are *technically* different, these two terms are used interchangeably.
- Units typically used in science are grams and kilograms.
 - 1 kilogram = 1000 grams
- State the form of matter in a sample.
- Phase- the number of layers present in a sample

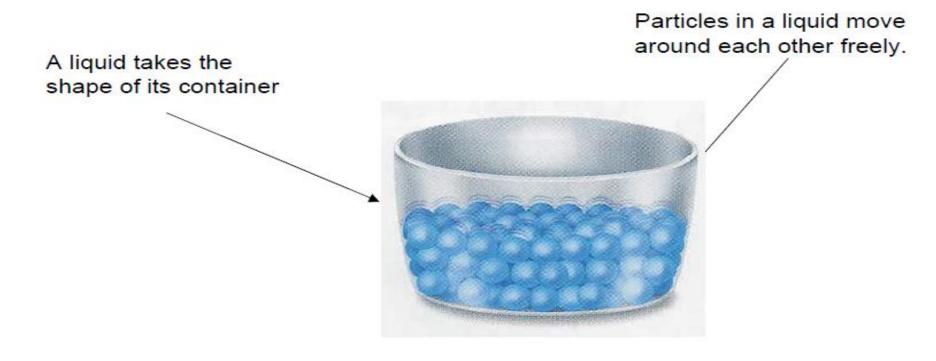

STATES OF MATTER

The **Kinetic Molecular Theory** •All matter is made of atom and molecules that act as tiny particles

- •These particles are always in motion (yes even in solids)
- •The higher the temperature the faster the particles move-
- •Kinetic energy is directly proportional to Kelvin Temperature (bigger particles move slower)

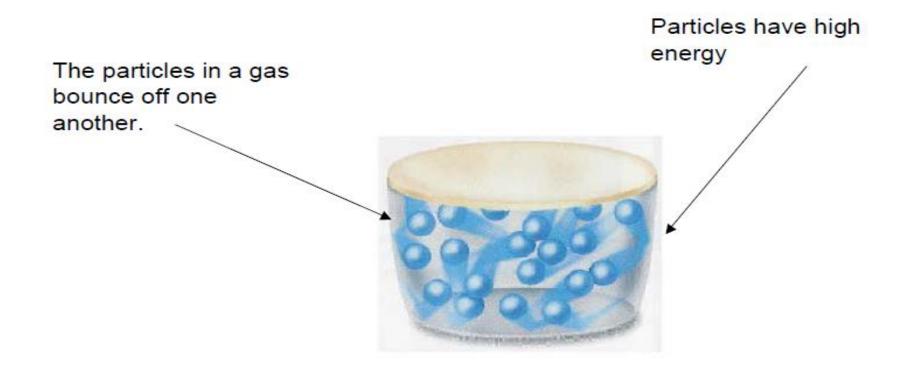

STATES OF MATTER

 Difference between solids, liquids, & gases are the attractive forces amongst the particles and their energy.


The 1st of the 4 States of Matter

Solid- has a definite volume and a definite shape.

The 2nd State of Matter


Liquid- has a definite volume, not a definite shape.

The 3rd State of Matter

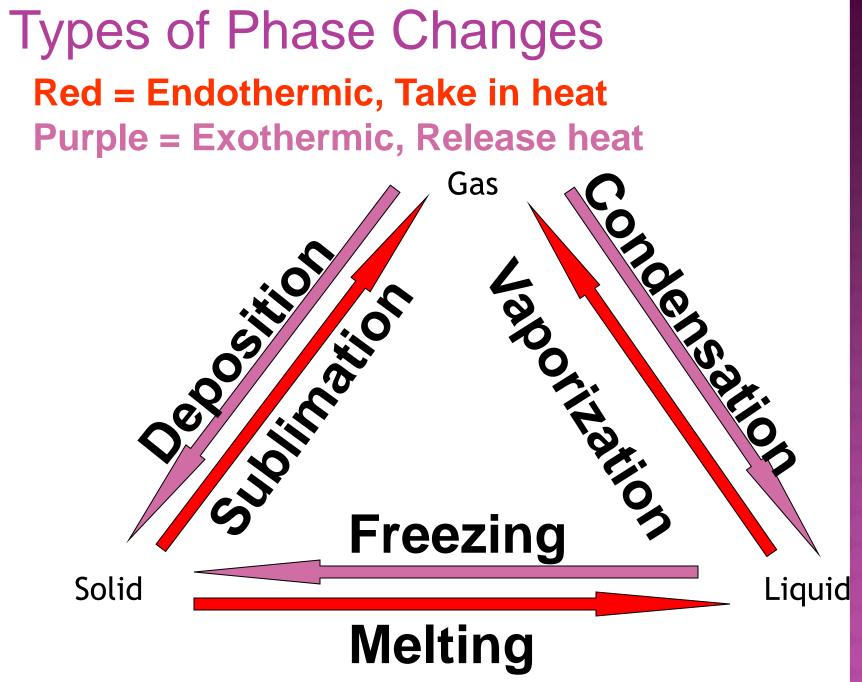
Gas- has no definite volume, or a definite shape.

The 4th State of Matter

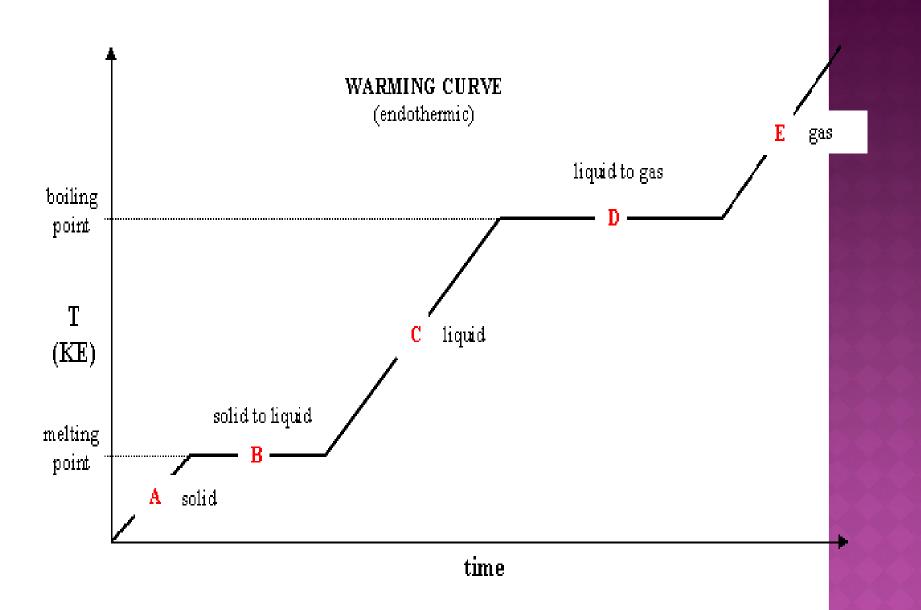
Plasma- It is estimated that 99% of the matter in the observable universe is plasma.

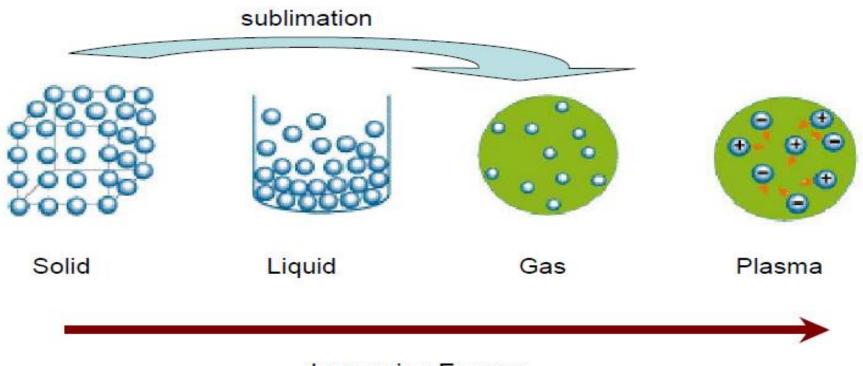
Plasmas consist of freely moving charged particles.

Formed at high temperatures when electrons are stripped from neutral atoms.


Plasmas are common in nature

PROPERTIES OF SOLIDS, LIQUIDS, & GASES


State	Shape	Volume	Compressibility	Microscopic Properties
Solid	Definite	Definite	Negligible	Particles touching & tightly packed in rigid arrays.
Liquid	Indefinite	Definite	Very Little	Particles touching but mobile.
Gas	Indefinite	Indefinite	High	Particles far apart and independent of one another.


NAMES OF WATER PHASE CHANGES

Endothermic Requires Energy to go forward • Melting: Solid \rightarrow Liq • Boiling (forced) Liquid \rightarrow Gas • Evaporation (spon) Liquid \rightarrow Gas Sublimation Solid \rightarrow Gas

Exothermic Gives energy off Condensation $Gas \rightarrow Liq$ • Freezing: $Liq \rightarrow Solid$ • Deposition: $Gas \rightarrow Solid$

Quick Review

Increasing Energy

CLASSIFYING MATTER

- Elements: most fundamental substance from which all substances are constructed.
- Elements are pure substances.
- Atoms: smallest particle that retains the properties of the element.
 - Atoms of a particular element cannot be broken into simpler atoms.

- Compounds: pure substances that are made up of 2 or more different elements; combine in fixed proportions.
 - Example: Glucose = C₆H₁₂O₆
 - Sodium chloride = NaCl

- H C OHHO C HH C OHH C OHH C OHU C OH
- Each compound has a specific atom ratio and a specific percentage by mass for each element in the compound.
 - Known as the <u>Law of Definite Composition</u> or <u>Law of Definite</u> <u>Proportions</u>.

COMPOSITION OF SOME COMMON COMPOUNDS

Name of Compound	Formula	Comparison of Properties
Ammonia	NH ₃	Nitrogen and hydrogen are odorless gases but ammonia has a strong odor.
Ethyl Alcohol (Ethanol)	C ₂ H ₅ OH	Carbon can be a black solid and hydrogen and oxygen are colorless gases. Ethyl alcohol is a colorless, flammable liquid.
Hydrogen Sulfide	H ₂ S	Hydrogen is a colorless, odorless gas. Sulfur is a pale yellow solid. Hydrogen sulfide is a colorless gas that smells like rotten eggs.

MIXTURES

- Combinations of two or more substances that can be varied in proportions but are not combined chemically together.
- Heterogeneous mixtures do not have the same composition or properties throughout.
- Homogeneous mixtures have the same composition and properties throughout.
 - Solutions are homogeneous mixtures.

-Have the same composition

throughout

-Components are indistinguishable

-Can exist between all phases of matter: air (gases)

 brass (alloy- blend of multiple metals -solids)

●soda (gas, solid, liquid)

ADDING LIQUIDS TOGETHER

 Miscible- will mixwater and alcohol

 Immiscible- wont mix water and oil

Solutions are homogenous mixtures that do not scatter light. These mixtures are created when something is completely dissolved in pure water. Therefore, they are easily separated by distillation or evaporation. Appear in one phase of matter

Examples: sugar water, salt water

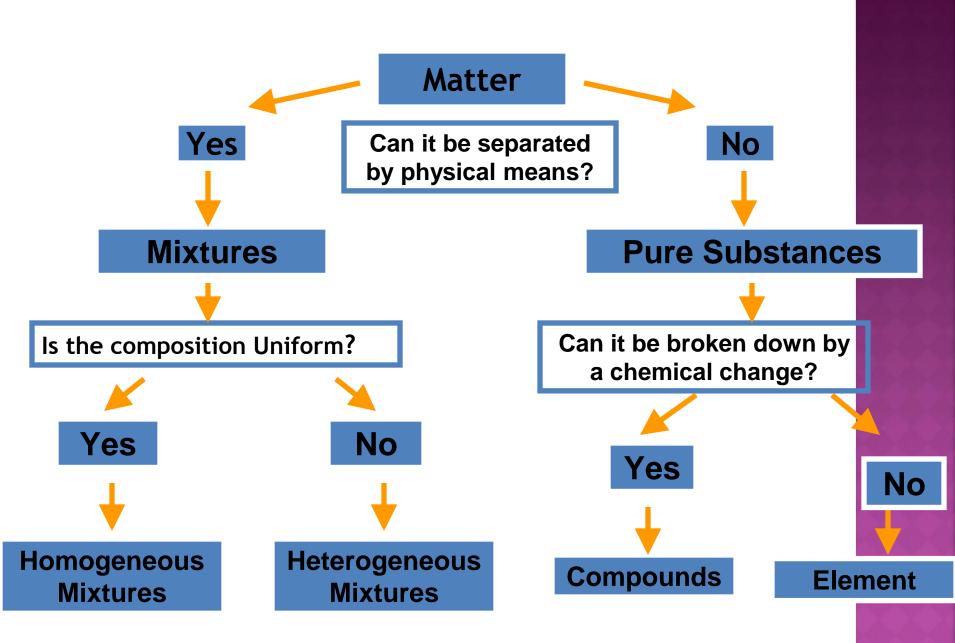
PARTS OF A SOLUTION

 Solvent- part that does the dissolvingwater is our universal solvent

 Solute- part that was dissolved (salt)

HOW DO WE INCREASE SOLUBILITY OF A SOLID INTO A LIQUID

- Heat it- more collisions between solute and solvent
- Mix- Fresh solvent to solute
- Crush- more surface area- more contact


COMMON SOLUTIONS (HOMOGENEOUS MIXTURES)

Solution	Composition						
Gaseous Solutions							
Natural Gas	Methane & small amounts of other gas						
Air	78% nitrogen, 20.9% oxygen, 0.9% argon, and traces of carbon dioxide & other gases						
Liquid Solutions							
Rubbing Alcohol	70% isopropyl alcohol & 30% water						
Solid Solutions							
Brass	70% copper & 30% zinc						
Stainless Steel	18% chromium, 8% nickel, 0.2% carbon & 73.8% iron						
Sterling Silver	92.5% silver & 7.5% copper						
14K Yellow Gold	58% gold, 24% silver, 17% copper & 1% zinc						
10K Yellow Gold	42% gold, 12% silver, 40% copper & 6% zinc						

Classify the following as heterogeneous or homogeneous.

- a) Gasoline
- b) Wood
- c) Brass
- d) Pizza

PHYSICAL & CHEMICAL PROPERTIES

- Characteristic properties can be used to identify or characterize a substance - and distinguish that substance from other substances.
 - Physical Properties: identify the substance without causing a change in the composition of the substance.
 - Color, odor, density, melting/boiling points, hardness, luster, ductility, malleability, and viscosity.
 - Chemical Properties: properties that relate to the change in the composition a substance to how it reacts with other substances.
 - Tendency to react with other substances, to tarnish, to corrode, to explode, or act as a poison.

MORE ON PROPERTIES

- Intensive Properties are not dependent on the amount of matter present.
- Depend on what is Inside
 - Density, boiling point, color
- Extensive Properties are dependent on the amount of matter present.
- Depend on how far they EXtend
 - Mass, volume, length

PHYSICAL & CHEMICAL CHANGES

- Physical changes do not change to the composition of the substance.
 - Typically involve phase changes.
- In any <u>Chemical change</u>, one or more substances are used up while one or more new substances are formed. This means that the composition of the original substance has changed.
 - Chemical reactions are chemical changes.

REACTION • Bubbles- gas given off

Bubbles- gas given off
Change in energybecomes warm- exothermic becomes cool- endothermic light is given off
A precipitate (solid) forms
Sometimes a change in color

- Classify the following as a physical property, chemical property, physical change, or chemical change.
 - a) Alcohol is flammable.
 - b) Alcohol is volatile; it evaporates readily.
 - c) A sample of table salt dissolves in a glass of water.
 - d) Over time, a flashlight battery loses its charge.

CHARACTERISTICS OF CHEMICAL CHANGES

- Reaction with acids
- Reaction with bases (alkalis)
- Reaction with oxygen (combustion)
- Ability to act as oxidizing agent

- Ability to act as reducing agent
- Reaction with other elements
- Decomposition into simpler substances
- Corrosion

- Give name of elements given their chemical symbols.
- Be able to write the symbols given an elements name.
- Describe the Class arrangements of the periodic table.
- List characteristics/properties that distinguish, metals, nonmetals and metalloids.

ELEMENTS

- Elements: are pure substances that cannot be decomposed by chemical changes.
- Building blocks of all matter.
- Each element has characteristic properties.
- Scientist came up with a way to organize the elements based on these characteristics.
- The Periodic Table

	GROUP		PE	RI	OD	IC	TA	BL	EC)F ⁻	THI	EE	LE	ME	INT	S		
PERIOD	1 1.0079 H				E ATOMIC N	and have	Me	005	Semimetal	Nonme	23 M]	http:/	/herwise.k.g-sj	olit.hr/perio	dni/en/		² 4.0026 He
1	HYDROGEN	2 A	GRO	GROUP ILPAC GROUP CAS				Alkalimetal Chalcogens element					13 IIIA 5 10.811	14 NA	15 VA	16 VIA 8 15,999	17 VIIA 9 18,998	HELDUM
2	Li	Be	SYMBOL B							Noble gas			B	C	N	O	F	Ne
	11 22.990	12 24.305	BORON					Actinide Ne - gas Fe - solid Ge - liquid Te - synthetic					13 26.982	14 28.086	15 30.974	16 32.065	17 35.453	18 39.948
3	Na	Mg	3 IIB		5 VB	6 VIB	7 VIIB						AL	Si	P PHOSPHORUS	SULPHUR	CL	Ar
	19 39.098	20 40.078	21 44.956	22 47.867	23 50.942	24 51.996			27 58.933	28 58.693	29 63.546	30 65.39	31 69.723	32 72.64	33 74.922	34 78.96	35 79.904	36 83.80
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	POTASSUM	CALOUM	SCANDUM	TITANUM	VANADUM		MANGANESE	IRON	COBALT	NICKEL	COPPER	ZINC	GALUUM	GERMANUM	ARSENIC	SELENRIM	BROMINE	KRYPTON
5	37 85.468	38 87.62 Sr	39 88.906 V	40 91.224 Zr	41 92.906 Nb	42 95.94	43 (98) MTSm	44 101.07 Du	45 102.91 Rh	46 105.42 Pd	47 107.87	48 112.41	49 114.82	50 118.71	51 121.76 Sb	52 127.60 To	53 126.90	54 131.29
-	RD	STEONTHM	Y	ZIECONUM	NICHUM	Mo	TECHNETUM	RUTHENUM	RHODUM	PALLADUM	Ag	Cd	In	Sn	ANTIMONY	Те	L COINE	Xe
	55 132.91	56 137.33	57-71	72 178.49	73 180.95	74 183.84	75 186.21	76 190.23	77 192.22	78 195.08	79 196.97	80 200.59	81 204.38	82 207.2	83 208.98	84 (209)	85 (210)	86 (222)
6	Cs	Ba	La-Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	CAEBUM	BARUM	Lanthanide	HAFNIUM	TANTALLIM	TUNGSTEN	PHENIUM	OSMUM	IRDUM	PLATINUM	GOLD	MERCURY	THALLIUM	LEAD	BISMUTH	POLONIUM	ASTATINE	RADON
	87 (223)	88 (226)	89-103	104 (261)	-	106 (296)	107 (264)	108 (277)	109 (268)	110 (281)	111 (272)	112 (285)		114 (289)				
7	Fr	Ra	Ac-Lr Actinide	IRſ	IDIP	Sg	IBlh	HIS	Mit	Uum	Umm	Umb		Uuq				100
	FRANCIUM	RADIUM	Sectore 1	RUTHERFORDIUM	DUBNUM	SEABORGIUM	BOHRIUM	HASSIUM	MEITNERSUM	UNUNNERM	UNUNUNUM	UNUNBUM	y	UNUNCIADUM	1			274
				57 138.91	58 140.12	59 140.91	60 144.24	61 (145)	62 150.36	63 151.96	64 157.25	65 158.93	66 162.50	67 164,93		69 168.93	96-2002 EniO. (71 174.97
(1) Pure Appl. Chem., 73, No. 4, 667-683 (2001) Relative atomic mass is shown with five		La	Ce	Pr	Nd	IPm	Sm	Eu	Gd	Tb	Dv	Ho	Er	Tm	Yb	Lu		
significant figures. For elements have no stable nuclides, the value enclosed in brackets indicates the mass number of the longest-lived isotope of the element.		brackets	LANTHANUM	CERIUM	PRASECOVIMUM		PROMETHIUM			GADOLINUM		DY SPROS LIM		ERBIUM	THUUUM	YTTERSLIM	LUTETIUM	
do	do have a characteristic terristinal solopic														103 (000)			
	labad.	Conclusion of the point	e milit a	89 (227) AC	90 232.04 Th	91 231.04 Pa	92 238.03	93 (237) ND	94 (244) IPm	95 (243) Alm	% (247) Crm	97 (247) IBIK	98 (251)	99 (252) IES	100 (257) IFmn	101 (258) Mdl	102 (259) NO	103 (262) ILIP
Edito:: Aditya Vanthan (adivar@nattline.com)			ACTINILM	THORUM	PROTACTINUM	URANIUM	NEPTUNUM	PLUTONUM	AMERICIUM	CURIUM	BERKELLIM	CALFORNUM	ENSTENIUM	FERMIN	MENDELEVIUM	NOBELIUM	LAWRENCHM	

PERIODIC TABLE

- Groups: Vertical columns all have similar chemical properties.
- Periods: Horizontal rows properties change regularly across periods.
- Elements that are close together in a period tend to be more similar than one that are far apart.

METALS VS. NONMETALS

- Metals: Good conductors of heat and electricity.
 Malleable, Ductile, and have a metallic luster
 Tend to be Solids at room temperatures.
- Nonmetals: Poor conductors of heat and electricity.

Many nonmetals are Gases

 Metalloids: Share characteristics from both metals and non-metals.

All Metalloids are solids at room temp.

They are semiconductors many uses in electronics.